Addressing Extended Rainy Periods in Mobile Home Ventilation

Addressing Extended Rainy Periods in Mobile Home Ventilation

Importance of Efficient Duct Layouts for Airflow

The topic of "Understanding the Impact of Extended Rainy Periods on Mobile Home Ventilation" is both timely and crucial, especially given the increasing unpredictability of weather patterns due to climate change. Mobile homes, often more vulnerable to environmental conditions than traditional houses, face unique challenges when it comes to maintaining proper ventilation during extended rainy periods. Drainage systems prevent moisture buildup around mobile home HVAC units mobile home hvac repair allergen. Addressing these challenges is essential not only for the comfort of the occupants but also for their health and safety.


Extended rainy periods can significantly affect the ventilation systems within mobile homes. Unlike conventional houses, mobile homes typically have less robust construction materials and insulation, making them more susceptible to moisture accumulation. This moisture can lead to a host of problems, including mold growth, which poses serious health risks such as respiratory issues and allergies. The damp environment created by prolonged rain can exacerbate these issues if not properly managed through effective ventilation strategies.


Proper ventilation in mobile homes during rainy seasons is crucial for several reasons. Firstly, it helps control indoor humidity levels. High humidity can contribute to condensation on windows and walls, creating an ideal breeding ground for mold and mildew. Secondly, adequate airflow prevents the build-up of volatile organic compounds (VOCs) from household products that tend to linger longer in closed environments typical of mobile homes.


One effective strategy for addressing ventilation during rainy periods is the installation of energy-efficient exhaust fans in key areas like kitchens and bathrooms where moisture generation is highest. These fans help expel humid air outside rather than allowing it to circulate throughout the home. Moreover, ensuring that vents are not blocked by furniture or other obstructions is critical to maintaining consistent airflow.


Another approach is using dehumidifiers strategically placed throughout the home. These devices are particularly useful when natural ventilation options like opening windows are not feasible due to ongoing rain. Dehumidifiers can help maintain optimal indoor humidity levels even during lengthy wet spells.


Additionally, regular maintenance checks on existing HVAC systems ensure they function correctly throughout adverse weather conditions. This includes replacing filters frequently and checking ductwork for leaks or blockages that could hinder performance.


In conclusion, addressing extended rainy periods in mobile home ventilation requires a proactive approach combining structural adjustments with routine maintenance practices aimed at promoting healthy indoor air quality despite challenging weather conditions. By implementing effective solutions tailored specifically towards mitigating moisture-related issues common among mobile homes during heavy rains-such as strategic fan placement or utilizing portable dehumidifiers-occupants not only enhance their living comfort but also safeguard their health against potential hazards associated with inadequate ventilation systems exacerbated by prolonged rainfall events.

The Role of Proper Ventilation in Maintaining Indoor Air Quality During Prolonged Rainy Seasons is a crucial consideration, especially for those residing in mobile homes. Extended rainy periods can pose significant challenges to maintaining healthy indoor air quality, as increased humidity levels and limited air circulation often accompany the relentless downpours. In such conditions, proper ventilation becomes not just a matter of comfort but a necessity for health and well-being.


Mobile homes are particularly susceptible to the adverse effects of poor ventilation during prolonged rainy seasons. These structures often have limited natural airflow due to their design and construction materials, which may trap moisture inside. This trapped moisture can lead to elevated humidity levels, creating an ideal environment for mold growth and dust mites. Both mold spores and dust mite droppings are known allergens that can exacerbate respiratory problems and lead to allergic reactions.


Proper ventilation, therefore, plays an integral role in mitigating these risks by ensuring that damp air is effectively expelled from the home while fresh air circulates freely within. The key is to establish a balance between removing excess humidity and introducing sufficient outdoor air without compromising energy efficiency or comfort. One effective strategy involves utilizing exhaust fans in critical areas such as kitchens and bathrooms where moisture tends to accumulate most rapidly. These fans help vent moist air directly outside before it has a chance to spread throughout the home.


In addition to mechanical solutions like exhaust fans, incorporating passive ventilation techniques can also be beneficial. For instance, installing vents at strategic locations around the home allows natural airflow by promoting cross-ventilation when weather permits. During breaks in rainfall, opening windows briefly can refresh indoor air quality substantially by diluting any build-up of pollutants or allergens.


Moreover, dehumidifiers serve as valuable allies during extended rainy periods by actively removing excess moisture from the air within mobile homes. By maintaining optimal humidity levels-typically between 30% and 50%-dehumidifiers reduce the likelihood of mold growth while also improving overall comfort.


Lastly, regular maintenance checks on HVAC systems ensure they function efficiently throughout the rainy season. Clean filters facilitate better airflow while preventing recirculation of dust particles indoors-a vital aspect when external options might be limited due to inclement weather conditions outside.


In conclusion, addressing extended rainy periods requires proactive measures focused on achieving proper ventilation within mobile homes-a task essential not only for preserving structural integrity but more importantly safeguarding inhabitants' health against potential hazards posed by high humidity environments indoors. Through combined efforts involving mechanical aids like exhaust fans alongside passive techniques such as strategic vent placement-and perhaps aided further through thoughtful use of dehumidification equipment-residents stand poised effectively counteracting challenges brought forth during those long stretches dominated by incessant rains thereby securing healthier living spaces even amidst nature's wetter whims!

How Seasonal Changes Impact Air Quality in Mobile Homes

How Seasonal Changes Impact Air Quality in Mobile Homes

Seasonal changes can have a profound impact on air quality, particularly in the unique environment of mobile homes.. These structures, while offering flexibility and cost-effectiveness, often face challenges in maintaining optimal air quality year-round due to their construction and location.

Posted by on 2024-12-30

Regional Climate Considerations for Mobile Home Heating and Cooling Systems

Regional Climate Considerations for Mobile Home Heating and Cooling Systems

As climate change continues to affect global weather patterns, the importance of adapting our living spaces to new environmental realities becomes increasingly clear.. For residents of mobile homes, which are often more vulnerable to temperature extremes due to their construction and insulation limitations, upgrading heating and cooling systems is not just a matter of comfort—it’s a necessity for health and safety.

Posted by on 2024-12-30

Preparing Mobile Home Ductwork for Extreme Seasonal Weather

Preparing Mobile Home Ductwork for Extreme Seasonal Weather

Exploring energy-efficient solutions and upgrades to enhance the performance of mobile home ductwork is crucial, especially when preparing for the extremes of seasonal weather.. Mobile homes, by design, often face unique challenges in maintaining temperature stability due to their construction and positioning.

Posted by on 2024-12-30

Techniques for Mapping Duct Layouts

Mobile homes, often cherished for their affordability and flexibility, present unique challenges when it comes to ventilation, especially during extended periods of wet weather. Unlike traditional homes, mobile homes are typically more compact and may not be as robustly constructed to withstand prolonged moisture exposure. This can lead to a series of common ventilation problems that require careful attention and strategic solutions.


One of the primary issues faced by mobile home dwellers during extended rainy periods is inadequate airflow. Limited space and fewer windows can result in poor circulation, trapping moisture inside the home. This trapped moisture can create a breeding ground for mold and mildew, which not only pose health risks but also threaten the structural integrity of the home. To combat this problem, it is crucial to ensure that ventilation systems are functioning optimally. Regular maintenance checks on exhaust fans in kitchens and bathrooms can help facilitate better air movement and reduce humidity levels.


Another challenge is condensation build-up on windows and walls. When warm indoor air meets cooler surfaces, particularly glass or metal components commonly found in mobile homes, condensation occurs. Over time, this excess moisture can seep into walls and flooring, leading to rot or weakening materials like wood or particle board. Installing double-pane windows or using thermal curtains can help reduce temperature disparities that cause condensation. Additionally, employing dehumidifiers during rainy seasons can effectively manage indoor humidity levels.


Roof leaks are also a frequent concern during heavy rainfalls for mobile homeowners. Poorly sealed roofs or damaged shingles allow water ingress that may go unnoticed until significant damage has occurred. Regular roof inspections before the onset of wet weather are vital in identifying potential leak sources early on. Applying waterproof sealants or ensuring proper drainage systems around the roof area can mitigate leak risks substantially.


Furthermore, many mobile homes lack adequate underfloor ventilation due to their design positioned close to the ground with limited crawl space access. This deficiency leads to moisture accumulation beneath the home structure itself-culminating in musty odors indoors or even subfloor deterioration over time if left unchecked. Installing vents around skirting boards or utilizing vapor barriers underneath your mobile home will improve airflow beneath your property while protecting against ground dampness rising upwards into living areas above.


Lastly-and perhaps most importantly-education plays an integral role in managing these common ventilation problems effectively within mobile homes during extended wet weather conditions; understanding how different components interact within one's environment allows residents informed decision-making regarding best practices specific not just towards prevention but remediation efforts too when necessary circumstances arise unexpectedly later down line!


In conclusion: while dealing with persistent rain presents its own set obstacles regardless housing type involved therein ultimately overcoming them boils down proactive measures combined well-informed strategies tailored suit individual needs respective situations encountered along way!

Techniques for Mapping Duct Layouts

Tools and Technologies for Accurate Duct Mapping

Mobile homes, while providing affordable and flexible living options, often face unique challenges when it comes to maintaining proper ventilation. This becomes particularly evident during extended periods of rainfall, which can exacerbate moisture problems, leading to poor air quality and potential health risks. Effective strategies for improving ventilation in mobile homes amidst continuous rainfall are essential to ensure a healthy living environment.


One of the most critical steps in enhancing ventilation is understanding the airflow dynamics within a mobile home. Due to their construction, these homes may have limited natural ventilation pathways. During rainy seasons, relying solely on open windows or vents might be impractical due to water ingress concerns. Therefore, implementing mechanical ventilation systems becomes vital. Installing exhaust fans in key areas such as the kitchen and bathroom can significantly help expel moist air outside, reducing humidity levels inside the home.


Additionally, incorporating dehumidifiers can play a crucial role in managing indoor moisture levels. These devices work by extracting excess moisture from the air and are particularly useful in smaller spaces like mobile homes where high humidity can quickly lead to condensation issues. Selecting energy-efficient models ensures that they can run continuously during prolonged rainy spells without causing a significant spike in energy consumption.


Moreover, ensuring that the mobile home is well-sealed against external elements is another strategy that cannot be overlooked. Regular maintenance checks for leaks around windows, doors, and roofing materials are essential preventive measures against water intrusion during heavy rains. Proper insulation not only helps maintain temperature but also acts as a barrier against unwanted moisture entry.


Another effective approach is utilizing passive design strategies tailored for mobile homes. This involves optimizing window placement and using reflective roofing materials to facilitate natural air circulation even when mechanical means are not viable due to power outages or other constraints during storms.


It's also beneficial for residents of mobile homes to adopt lifestyle practices that contribute positively toward managing indoor air quality during rainy periods. Simple actions like avoiding drying clothes indoors or using lids while cooking can significantly reduce internal moisture accumulation.


Lastly, education plays an instrumental role in equipping homeowners with knowledge about maintaining their environments effectively under adverse weather conditions. Workshops or community seminars focused on best practices for home maintenance during rainy seasons could empower residents with practical skills and insights.


In conclusion, improving ventilation in mobile homes amidst continuous rainfall requires a multifaceted approach combining technology with proactive maintenance and informed lifestyle choices. By employing mechanical solutions alongside passive techniques and regular upkeep practices, occupants can create healthier living conditions despite challenging weather patterns. As climate variability continues to influence local precipitation trends globally, these strategies become increasingly important for ensuring sustainable habitation solutions within vulnerable housing forms such as mobile homes.

Best Practices for Cleaner Airflow

Selecting and installing appropriate HVAC solutions for optimal performance in wet conditions is a crucial consideration, particularly when addressing the unique challenges posed by extended rainy periods in mobile home ventilation. Mobile homes, characterized by their compact design and often limited insulation, are particularly vulnerable to moisture-related issues. As such, ensuring efficient ventilation during prolonged rainy seasons is not merely a matter of comfort but also one of health and structural integrity.


The primary challenge in these scenarios is managing humidity levels that can lead to mold growth, condensation, and deterioration of building materials. In mobile homes, where space is at a premium and construction often involves lighter materials than traditional houses, these issues can quickly escalate if not appropriately managed. Therefore, selecting an HVAC system that can effectively handle high humidity while maintaining energy efficiency is paramount.


One solution lies in choosing systems with integrated dehumidification capabilities. These systems are designed to reduce indoor humidity levels efficiently without excessively cooling the space-a common side effect of conventional air conditioning units operating in humid environments. By balancing temperature control with humidity management, these HVAC systems help maintain indoor air quality while protecting the structural components of the mobile home from moisture damage.


Moreover, installing smart thermostats with sensors that monitor both temperature and humidity allows homeowners to customize their climate control settings according to real-time needs. This technological integration ensures that the HVAC system operates optimally under varying weather conditions typical of extended rainy periods. Such adaptability not only enhances comfort but also reduces energy consumption by avoiding unnecessary heating or cooling cycles.


Another critical aspect is ensuring proper installation and maintenance of ventilation systems within mobile homes. Given the potential for rapid moisture buildup during prolonged rainfall, it's essential that exhaust fans are strategically placed in areas prone to dampness-such as kitchens and bathrooms-to expel excess moisture efficiently. Regular maintenance checks should be conducted to ensure that these fans operate correctly and are free from obstructions like dust or debris that could impede airflow.


Additionally, attention must be given to sealing gaps around windows, doors, and other entry points where moisture might infiltrate the living space. Proper insulation can play a significant role here; however, it should be noted that insulation alone cannot substitute for a well-designed HVAC system tailored for high-humidity environments.


In conclusion, selecting and installing suitable HVAC solutions for mobile homes during extended rainy periods requires careful consideration of several factors: efficient dehumidification capabilities, adaptive technology such as smart thermostats, strategic placement of exhaust fans for optimal ventilation, and diligent maintenance practices. By addressing these elements head-on, homeowners can ensure their living spaces remain comfortable and healthy regardless of external weather conditions-ultimately safeguarding both their investment in property and personal well-being against the challenges posed by sustained wet weather patterns.

Case Studies of Improved Air Quality in Mobile Homes

Ensuring the efficiency and longevity of HVAC systems in mobile homes during extended rainy periods is a task that demands attention to detail and proactive maintenance. Rainy seasons can pose unique challenges for mobile home ventilation, potentially impacting both the functionality of HVAC units and the indoor air quality. Therefore, understanding how to maintain these systems under such conditions is essential for comfort and energy efficiency.


Firstly, it is crucial to regularly inspect and clean the HVAC system's components. Rain brings moisture, which can lead to rusting or corrosion of metal parts if not properly managed. Homeowners should routinely check outdoor units for debris buildup like leaves or twigs that might obstruct airflow. It's also important to ensure that drainage lines are clear so that accumulated water can escape without causing damage.


Moreover, changing filters more frequently during rainy seasons can prevent blockages caused by increased humidity levels that encourage mold growth. A clogged filter not only reduces indoor air quality but also forces the system to work harder, leading to higher energy consumption and wear on components.


Next, checking insulation around ductwork can help maintain efficiency. Moisture from persistent rain can penetrate improperly sealed ducts, which might lead to loss of conditioned air and increased energy usage as the system compensates for the inefficiency. Sealing any leaks with appropriate materials ensures that conditioned air flows efficiently throughout the home.


Furthermore, utilizing dehumidifiers can be beneficial during rainy periods to control indoor humidity levels, preventing mold growth and maintaining a comfortable environment. By reducing humidity levels inside the mobile home, HVAC systems don't have to work as hard to regulate temperature and moisture levels.


Regular professional maintenance checks are vital in ensuring optimal performance of HVAC systems during extended rainy periods. Professional technicians have the expertise necessary to identify potential issues before they become significant problems. Scheduling bi-annual or annual inspections allows for comprehensive evaluations of all system components.


Lastly, homeowners should consider investing in smart thermostats or other advanced technology that optimizes HVAC operations based on weather conditions. Such technologies adjust settings automatically during different weather patterns, maximizing energy efficiency while maintaining comfort levels inside the home.


In conclusion, maintaining HVAC efficiency and longevity during extended rainy periods in mobile homes involves a combination of routine inspections, timely component replacements like filters, proper sealing of ductwork, use of dehumidifiers, regular professional maintenance checks, and leveraging advanced technology for optimal system performance. These proactive measures not only ensure comfort but also extend the life span of HVAC systems while conserving energy resources amidst challenging weather conditions.

In recent years, the issue of effective ventilation in mobile homes during extended rainy periods has gained significant attention. Mobile homes, often constructed with less robust materials than traditional houses, are particularly vulnerable to moisture-related problems. The persistent rain can exacerbate these issues, leading to increased humidity levels inside the home, which in turn can cause mold growth and exacerbate respiratory conditions for inhabitants. However, through innovation and strategic planning, several communities have successfully implemented improved ventilation systems that serve as exemplary case studies.


One such success story is from a community in the Pacific Northwest, known for its relentless rainfall. Residents faced frequent mold outbreaks due to inadequate ventilation systems that could not cope with prolonged exposure to moisture-laden air. The solution came through a community initiative that installed energy-efficient ventilation units designed specifically for high-moisture environments. These units included advanced features such as humidity sensors and automatic fans that activate when predetermined humidity levels are reached. As a result, there was a significant reduction in mold incidence reports, and residents noted an immediate improvement in indoor air quality.


Another notable case comes from the Gulf Coast region where heavy rains are common during hurricane season. Here, a collaborative effort between local government and housing manufacturers led to the development of an innovative roof venting system tailored for mobile homes. This system was engineered to facilitate better airflow while preventing water ingress during heavy rains. By incorporating specially designed vent covers that allowed moisture to escape but not enter, this initiative effectively mitigated the dampness problem without compromising structural integrity.


In Florida's Panhandle region, a mobile home park experimented with integrating passive solar ventilation techniques alongside traditional mechanical systems. By strategically placing reflective panels around vents and using translucent roofing materials, they maximized natural light and heat to drive warm air out through higher vents while cool air entered lower openings. This approach proved both cost-effective and energy-efficient, reducing reliance on electricity-driven devices during prolonged cloudy periods.


These success stories illustrate several key principles applicable across different climatic challenges: understanding environmental specifics, harnessing technology suited to those conditions, and fostering collaboration among stakeholders including residents, engineers, and policymakers.


In conclusion, addressing extended rainy periods in mobile home ventilation requires tailored solutions that balance practicality with innovation. As highlighted by these case studies from diverse regions facing similar challenges yet implementing unique strategies successfully - it is clear there isn't one-size-fits-all answer but rather adaptable approaches grounded in comprehensive assessment of local needs coupled with creative engineering solutions can lead us towards healthier living spaces even amidst persistent rain events.

Tubular heat exchanger
Partial view into inlet plenum of shell and tube heat exchanger of a refrigerant based chiller for providing air-conditioning to a building

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes.[1] The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact.[2] They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.[3]

Flow arrangement

[edit]
Countercurrent (A) and parallel (B) flows

There are three primary classifications of heat exchangers according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is the most efficient, in that it can transfer the most heat from the heat (transfer) medium per unit mass due to the fact that the average temperature difference along any unit length is higher. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.

For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.

The driving temperature across the heat transfer surface varies with position, but an appropriate mean temperature can be defined. In most simple systems this is the "log mean temperature difference" (LMTD). Sometimes direct knowledge of the LMTD is not available and the NTU method is used.

Types

[edit]

Double pipe heat exchangers are the simplest exchangers used in industries. On one hand, these heat exchangers are cheap for both design and maintenance, making them a good choice for small industries. On the other hand, their low efficiency coupled with the high space occupied in large scales, has led modern industries to use more efficient heat exchangers like shell and tube or plate. However, since double pipe heat exchangers are simple, they are used to teach heat exchanger design basics to students as the fundamental rules for all heat exchangers are the same.

1. Double-pipe heat exchanger

When one fluid flows through the smaller pipe, the other flows through the annular gap between the two pipes. These flows may be parallel or counter-flows in a double pipe heat exchanger.

(a) Parallel flow, where both hot and cold liquids enter the heat exchanger from the same side, flow in the same direction and exit at the same end. This configuration is preferable when the two fluids are intended to reach exactly the same temperature, as it reduces thermal stress and produces a more uniform rate of heat transfer.

(b) Counter-flow, where hot and cold fluids enter opposite sides of the heat exchanger, flow in opposite directions, and exit at opposite ends. This configuration is preferable when the objective is to maximize heat transfer between the fluids, as it creates a larger temperature differential when used under otherwise similar conditions.[citation needed]

The figure above illustrates the parallel and counter-flow flow directions of the fluid exchanger.

2. Shell-and-tube heat exchanger

In a shell-and-tube heat exchanger, two fluids at different temperatures flow through the heat exchanger. One of the fluids flows through the tube side and the other fluid flows outside the tubes, but inside the shell (shell side).

Baffles are used to support the tubes, direct the fluid flow to the tubes in an approximately natural manner, and maximize the turbulence of the shell fluid. There are many various kinds of baffles, and the choice of baffle form, spacing, and geometry depends on the allowable flow rate of the drop in shell-side force, the need for tube support, and the flow-induced vibrations. There are several variations of shell-and-tube exchangers available; the differences lie in the arrangement of flow configurations and details of construction.

In application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.

3. Plate Heat Exchanger

A plate heat exchanger contains an amount of thin shaped heat transfer plates bundled together. The gasket arrangement of each pair of plates provides two separate channel system. Each pair of plates form a channel where the fluid can flow through. The pairs are attached by welding and bolting methods. The following shows the components in the heat exchanger.

In single channels the configuration of the gaskets enables flow through. Thus, this allows the main and secondary media in counter-current flow. A gasket plate heat exchanger has a heat region from corrugated plates. The gasket function as seal between plates and they are located between frame and pressure plates. Fluid flows in a counter current direction throughout the heat exchanger. An efficient thermal performance is produced. Plates are produced in different depths, sizes and corrugated shapes. There are different types of plates available including plate and frame, plate and shell and spiral plate heat exchangers. The distribution area guarantees the flow of fluid to the whole heat transfer surface. This helps to prevent stagnant area that can cause accumulation of unwanted material on solid surfaces. High flow turbulence between plates results in a greater transfer of heat and a decrease in pressure.

4. Condensers and Boilers Heat exchangers using a two-phase heat transfer system are condensers, boilers and evaporators. Condensers are instruments that take and cool hot gas or vapor to the point of condensation and transform the gas into a liquid form. The point at which liquid transforms to gas is called vaporization and vice versa is called condensation. Surface condenser is the most common type of condenser where it includes a water supply device. Figure 5 below displays a two-pass surface condenser.

The pressure of steam at the turbine outlet is low where the steam density is very low where the flow rate is very high. To prevent a decrease in pressure in the movement of steam from the turbine to condenser, the condenser unit is placed underneath and connected to the turbine. Inside the tubes the cooling water runs in a parallel way, while steam moves in a vertical downward position from the wide opening at the top and travel through the tube. Furthermore, boilers are categorized as initial application of heat exchangers. The word steam generator was regularly used to describe a boiler unit where a hot liquid stream is the source of heat rather than the combustion products. Depending on the dimensions and configurations the boilers are manufactured. Several boilers are only able to produce hot fluid while on the other hand the others are manufactured for steam production.

Shell and tube

[edit]
A shell and tube heat exchanger
Shell and tube heat exchanger

Shell and tube heat exchangers consist of a series of tubes which contain fluid that must be either heated or cooled. A second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and tube heat exchangers are typically used for high-pressure applications (with pressures greater than 30 bar and temperatures greater than 260 °C).[4] This is because the shell and tube heat exchangers are robust due to their shape.
Several thermal design features must be considered when designing the tubes in the shell and tube heat exchangers: There can be many variations on the shell and tube design. Typically, the ends of each tube are connected to plenums (sometimes called water boxes) through holes in tubesheets. The tubes may be straight or bent in the shape of a U, called U-tubes.

  • Tube diameter: Using a small tube diameter makes the heat exchanger both economical and compact. However, it is more likely for the heat exchanger to foul up faster and the small size makes mechanical cleaning of the fouling difficult. To prevail over the fouling and cleaning problems, larger tube diameters can be used. Thus to determine the tube diameter, the available space, cost and fouling nature of the fluids must be considered.
  • Tube thickness: The thickness of the wall of the tubes is usually determined to ensure:
    • There is enough room for corrosion
    • That flow-induced vibration has resistance
    • Axial strength
    • Availability of spare parts
    • Hoop strength (to withstand internal tube pressure)
    • Buckling strength (to withstand overpressure in the shell)
  • Tube length: heat exchangers are usually cheaper when they have a smaller shell diameter and a long tube length. Thus, typically there is an aim to make the heat exchanger as long as physically possible whilst not exceeding production capabilities. However, there are many limitations for this, including space available at the installation site and the need to ensure tubes are available in lengths that are twice the required length (so they can be withdrawn and replaced). Also, long, thin tubes are difficult to take out and replace.
  • Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e., the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes' outside diameter. A larger tube pitch leads to a larger overall shell diameter, which leads to a more expensive heat exchanger.
  • Tube corrugation: this type of tubes, mainly used for the inner tubes, increases the turbulence of the fluids and the effect is very important in the heat transfer giving a better performance.
  • Tube Layout: refers to how tubes are positioned within the shell. There are four main types of tube layout, which are, triangular (30°), rotated triangular (60°), square (90°) and rotated square (45°). The triangular patterns are employed to give greater heat transfer as they force the fluid to flow in a more turbulent fashion around the piping. Square patterns are employed where high fouling is experienced and cleaning is more regular.
  • Baffle Design: baffles are used in shell and tube heat exchangers to direct fluid across the tube bundle. They run perpendicularly to the shell and hold the bundle, preventing the tubes from sagging over a long length. They can also prevent the tubes from vibrating. The most common type of baffle is the segmental baffle. The semicircular segmental baffles are oriented at 180 degrees to the adjacent baffles forcing the fluid to flow upward and downwards between the tube bundle. Baffle spacing is of large thermodynamic concern when designing shell and tube heat exchangers. Baffles must be spaced with consideration for the conversion of pressure drop and heat transfer. For thermo economic optimization it is suggested that the baffles be spaced no closer than 20% of the shell's inner diameter. Having baffles spaced too closely causes a greater pressure drop because of flow redirection. Consequently, having the baffles spaced too far apart means that there may be cooler spots in the corners between baffles. It is also important to ensure the baffles are spaced close enough that the tubes do not sag. The other main type of baffle is the disc and doughnut baffle, which consists of two concentric baffles. An outer, wider baffle looks like a doughnut, whilst the inner baffle is shaped like a disk. This type of baffle forces the fluid to pass around each side of the disk then through the doughnut baffle generating a different type of fluid flow.
  • Tubes & fins Design: in application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), the difference in heat transfer between air and cold fluid can be such that there is a need to increase heat transfer area on air side. For this function fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.

Fixed tube liquid-cooled heat exchangers especially suitable for marine and harsh applications can be assembled with brass shells, copper tubes, brass baffles, and forged brass integral end hubs.[citation needed] (See: Copper in heat exchangers).

Plate

[edit]
Conceptual diagram of a plate and frame heat exchanger
A single plate heat exchanger
An interchangeable plate heat exchanger directly applied to the system of a swimming pool

Another type of heat exchanger is the plate heat exchanger. These exchangers are composed of many thin, slightly separated plates that have very large surface areas and small fluid flow passages for heat transfer. Advances in gasket and brazing technology have made the plate-type heat exchanger increasingly practical. In HVAC applications, large heat exchangers of this type are called plate-and-frame; when used in open loops, these heat exchangers are normally of the gasket type to allow periodic disassembly, cleaning, and inspection. There are many types of permanently bonded plate heat exchangers, such as dip-brazed, vacuum-brazed, and welded plate varieties, and they are often specified for closed-loop applications such as refrigeration. Plate heat exchangers also differ in the types of plates that are used, and in the configurations of those plates. Some plates may be stamped with "chevron", dimpled, or other patterns, where others may have machined fins and/or grooves.

When compared to shell and tube exchangers, the stacked-plate arrangement typically has lower volume and cost. Another difference between the two is that plate exchangers typically serve low to medium pressure fluids, compared to medium and high pressures of shell and tube. A third and important difference is that plate exchangers employ more countercurrent flow rather than cross current flow, which allows lower approach temperature differences, high temperature changes, and increased efficiencies.

Plate and shell

[edit]

A third type of heat exchanger is a plate and shell heat exchanger, which combines plate heat exchanger with shell and tube heat exchanger technologies. The heart of the heat exchanger contains a fully welded circular plate pack made by pressing and cutting round plates and welding them together. Nozzles carry flow in and out of the platepack (the 'Plate side' flowpath). The fully welded platepack is assembled into an outer shell that creates a second flowpath ( the 'Shell side'). Plate and shell technology offers high heat transfer, high pressure, high operating temperature, compact size, low fouling and close approach temperature. In particular, it does completely without gaskets, which provides security against leakage at high pressures and temperatures.

Adiabatic wheel

[edit]

A fourth type of heat exchanger uses an intermediate fluid or solid store to hold heat, which is then moved to the other side of the heat exchanger to be released. Two examples of this are adiabatic wheels, which consist of a large wheel with fine threads rotating through the hot and cold fluids, and fluid heat exchangers.

Plate fin

[edit]

This type of heat exchanger uses "sandwiched" passages containing fins to increase the effectiveness of the unit. The designs include crossflow and counterflow coupled with various fin configurations such as straight fins, offset fins and wavy fins.

Plate and fin heat exchangers are usually made of aluminum alloys, which provide high heat transfer efficiency. The material enables the system to operate at a lower temperature difference and reduce the weight of the equipment. Plate and fin heat exchangers are mostly used for low temperature services such as natural gas, helium and oxygen liquefaction plants, air separation plants and transport industries such as motor and aircraft engines.

Advantages of plate and fin heat exchangers:

  • High heat transfer efficiency especially in gas treatment
  • Larger heat transfer area
  • Approximately 5 times lighter in weight than that of shell and tube heat exchanger. [citation needed]
  • Able to withstand high pressure

Disadvantages of plate and fin heat exchangers:

  • Might cause clogging as the pathways are very narrow
  • Difficult to clean the pathways
  • Aluminium alloys are susceptible to Mercury Liquid Embrittlement Failure

Finned tube

[edit]

The usage of fins in a tube-based heat exchanger is common when one of the working fluids is a low-pressure gas, and is typical for heat exchangers that operate using ambient air, such as automotive radiators and HVAC air condensers. Fins dramatically increase the surface area with which heat can be exchanged, which improves the efficiency of conducting heat to a fluid with very low thermal conductivity, such as air. The fins are typically made from aluminium or copper since they must conduct heat from the tube along the length of the fins, which are usually very thin.

The main construction types of finned tube exchangers are:

  • A stack of evenly-spaced metal plates act as the fins and the tubes are pressed through pre-cut holes in the fins, good thermal contact usually being achieved by deformation of the fins around the tube. This is typical construction for HVAC air coils and large refrigeration condensers.
  • Fins are spiral-wound onto individual tubes as a continuous strip, the tubes can then be assembled in banks, bent in a serpentine pattern, or wound into large spirals.
  • Zig-zag metal strips are sandwiched between flat rectangular tubes, often being soldered or brazed together for good thermal and mechanical strength. This is common in low-pressure heat exchangers such as water-cooling radiators. Regular flat tubes will expand and deform if exposed to high pressures but flat microchannel tubes allow this construction to be used for high pressures.[5]

Stacked-fin or spiral-wound construction can be used for the tubes inside shell-and-tube heat exchangers when high efficiency thermal transfer to a gas is required.

In electronics cooling, heat sinks, particularly those using heat pipes, can have a stacked-fin construction.

Pillow plate

[edit]

A pillow plate heat exchanger is commonly used in the dairy industry for cooling milk in large direct-expansion stainless steel bulk tanks. Nearly the entire surface area of a tank can be integrated with this heat exchanger, without gaps that would occur between pipes welded to the exterior of the tank. Pillow plates can also be constructed as flat plates that are stacked inside a tank. The relatively flat surface of the plates allows easy cleaning, especially in sterile applications.

The pillow plate can be constructed using either a thin sheet of metal welded to the thicker surface of a tank or vessel, or two thin sheets welded together. The surface of the plate is welded with a regular pattern of dots or a serpentine pattern of weld lines. After welding the enclosed space is pressurised with sufficient force to cause the thin metal to bulge out around the welds, providing a space for heat exchanger liquids to flow, and creating a characteristic appearance of a swelled pillow formed out of metal.

Waste heat recovery units

[edit]

A waste heat recovery unit (WHRU) is a heat exchanger that recovers heat from a hot gas stream while transferring it to a working medium, typically water or oils. The hot gas stream can be the exhaust gas from a gas turbine or a diesel engine or a waste gas from industry or refinery.

Large systems with high volume and temperature gas streams, typical in industry, can benefit from steam Rankine cycle (SRC) in a waste heat recovery unit, but these cycles are too expensive for small systems. The recovery of heat from low temperature systems requires different working fluids than steam.

An organic Rankine cycle (ORC) waste heat recovery unit can be more efficient at low temperature range using refrigerants that boil at lower temperatures than water. Typical organic refrigerants are ammonia, pentafluoropropane (R-245fa and R-245ca), and toluene.

The refrigerant is boiled by the heat source in the evaporator to produce super-heated vapor. This fluid is expanded in the turbine to convert thermal energy to kinetic energy, that is converted to electricity in the electrical generator. This energy transfer process decreases the temperature of the refrigerant that, in turn, condenses. The cycle is closed and completed using a pump to send the fluid back to the evaporator.

Dynamic scraped surface

[edit]

Another type of heat exchanger is called "(dynamic) scraped surface heat exchanger". This is mainly used for heating or cooling with high-viscosity products, crystallization processes, evaporation and high-fouling applications. Long running times are achieved due to the continuous scraping of the surface, thus avoiding fouling and achieving a sustainable heat transfer rate during the process.

Phase-change

[edit]
Typical kettle reboiler used for industrial distillation towers
Typical water-cooled surface condenser

In addition to heating up or cooling down fluids in just a single phase, heat exchangers can be used either to heat a liquid to evaporate (or boil) it or used as condensers to cool a vapor and condense it to a liquid. In chemical plants and refineries, reboilers used to heat incoming feed for distillation towers are often heat exchangers.[6][7]

Distillation set-ups typically use condensers to condense distillate vapors back into liquid.

Power plants that use steam-driven turbines commonly use heat exchangers to boil water into steam. Heat exchangers or similar units for producing steam from water are often called boilers or steam generators.

In the nuclear power plants called pressurized water reactors, special large heat exchangers pass heat from the primary (reactor plant) system to the secondary (steam plant) system, producing steam from water in the process. These are called steam generators. All fossil-fueled and nuclear power plants using steam-driven turbines have surface condensers to convert the exhaust steam from the turbines into condensate (water) for re-use.[8][9]

To conserve energy and cooling capacity in chemical and other plants, regenerative heat exchangers can transfer heat from a stream that must be cooled to another stream that must be heated, such as distillate cooling and reboiler feed pre-heating.

This term can also refer to heat exchangers that contain a material within their structure that has a change of phase. This is usually a solid to liquid phase due to the small volume difference between these states. This change of phase effectively acts as a buffer because it occurs at a constant temperature but still allows for the heat exchanger to accept additional heat. One example where this has been investigated is for use in high power aircraft electronics.

Heat exchangers functioning in multiphase flow regimes may be subject to the Ledinegg instability.

Direct contact

[edit]

Direct contact heat exchangers involve heat transfer between hot and cold streams of two phases in the absence of a separating wall.[10] Thus such heat exchangers can be classified as:

  • Gas – liquid
  • Immiscible liquid – liquid
  • Solid-liquid or solid – gas

Most direct contact heat exchangers fall under the Gas – Liquid category, where heat is transferred between a gas and liquid in the form of drops, films or sprays.[4]

Such types of heat exchangers are used predominantly in air conditioning, humidification, industrial hot water heating, water cooling and condensing plants.[11]

Phases[12] Continuous phase Driving force Change of phase Examples
Gas – Liquid Gas Gravity No Spray columns, packed columns
      Yes Cooling towers, falling droplet evaporators
    Forced No Spray coolers/quenchers
    Liquid flow Yes Spray condensers/evaporation, jet condensers
  Liquid Gravity No Bubble columns, perforated tray columns
      Yes Bubble column condensers
    Forced No Gas spargers
    Gas flow Yes Direct contact evaporators, submerged combustion

Microchannel

[edit]

Microchannel heat exchangers are multi-pass parallel flow heat exchangers consisting of three main elements: manifolds (inlet and outlet), multi-port tubes with the hydraulic diameters smaller than 1mm, and fins. All the elements usually brazed together using controllable atmosphere brazing process. Microchannel heat exchangers are characterized by high heat transfer ratio, low refrigerant charges, compact size, and lower airside pressure drops compared to finned tube heat exchangers.[citation needed] Microchannel heat exchangers are widely used in automotive industry as the car radiators, and as condenser, evaporator, and cooling/heating coils in HVAC industry.

Micro heat exchangers, Micro-scale heat exchangers, or microstructured heat exchangers are heat exchangers in which (at least one) fluid flows in lateral confinements with typical dimensions below 1 mm. The most typical such confinement are microchannels, which are channels with a hydraulic diameter below 1 mm. Microchannel heat exchangers can be made from metal or ceramics.[13] Microchannel heat exchangers can be used for many applications including:

  • high-performance aircraft gas turbine engines[14]
  • heat pumps[15]
  • Microprocessor and microchip cooling[16]
  • air conditioning[17]

HVAC and refrigeration air coils

[edit]

One of the widest uses of heat exchangers is for refrigeration and air conditioning. This class of heat exchangers is commonly called air coils, or just coils due to their often-serpentine internal tubing, or condensers in the case of refrigeration, and are typically of the finned tube type. Liquid-to-air, or air-to-liquid HVAC coils are typically of modified crossflow arrangement. In vehicles, heat coils are often called heater cores.

On the liquid side of these heat exchangers, the common fluids are water, a water-glycol solution, steam, or a refrigerant. For heating coils, hot water and steam are the most common, and this heated fluid is supplied by boilers, for example. For cooling coils, chilled water and refrigerant are most common. Chilled water is supplied from a chiller that is potentially located very far away, but refrigerant must come from a nearby condensing unit. When a refrigerant is used, the cooling coil is the evaporator, and the heating coil is the condenser in the vapor-compression refrigeration cycle. HVAC coils that use this direct-expansion of refrigerants are commonly called DX coils. Some DX coils are "microchannel" type.[5]

On the air side of HVAC coils a significant difference exists between those used for heating, and those for cooling. Due to psychrometrics, air that is cooled often has moisture condensing out of it, except with extremely dry air flows. Heating some air increases that airflow's capacity to hold water. So heating coils need not consider moisture condensation on their air-side, but cooling coils must be adequately designed and selected to handle their particular latent (moisture) as well as the sensible (cooling) loads. The water that is removed is called condensate.

For many climates, water or steam HVAC coils can be exposed to freezing conditions. Because water expands upon freezing, these somewhat expensive and difficult to replace thin-walled heat exchangers can easily be damaged or destroyed by just one freeze. As such, freeze protection of coils is a major concern of HVAC designers, installers, and operators.

The introduction of indentations placed within the heat exchange fins controlled condensation, allowing water molecules to remain in the cooled air.[18]

The heat exchangers in direct-combustion furnaces, typical in many residences, are not 'coils'. They are, instead, gas-to-air heat exchangers that are typically made of stamped steel sheet metal. The combustion products pass on one side of these heat exchangers, and air to heat on the other. A cracked heat exchanger is therefore a dangerous situation that requires immediate attention because combustion products may enter living space.

Helical-coil

[edit]
Helical-Coil Heat Exchanger sketch, which consists of a shell, core, and tubes (Scott S. Haraburda design)

Although double-pipe heat exchangers are the simplest to design, the better choice in the following cases would be the helical-coil heat exchanger (HCHE):

  • The main advantage of the HCHE, like that for the Spiral heat exchanger (SHE), is its highly efficient use of space, especially when it's limited and not enough straight pipe can be laid.[19]
  • Under conditions of low flowrates (or laminar flow), such that the typical shell-and-tube exchangers have low heat-transfer coefficients and becoming uneconomical.[19]
  • When there is low pressure in one of the fluids, usually from accumulated pressure drops in other process equipment.[19]
  • When one of the fluids has components in multiple phases (solids, liquids, and gases), which tends to create mechanical problems during operations, such as plugging of small-diameter tubes.[20] Cleaning of helical coils for these multiple-phase fluids can prove to be more difficult than its shell and tube counterpart; however the helical coil unit would require cleaning less often.

These have been used in the nuclear industry as a method for exchanging heat in a sodium system for large liquid metal fast breeder reactors since the early 1970s, using an HCHE device invented by Charles E. Boardman and John H. Germer.[21] There are several simple methods for designing HCHE for all types of manufacturing industries, such as using the Ramachandra K. Patil (et al.) method from India and the Scott S. Haraburda method from the United States.[19][20]

However, these are based upon assumptions of estimating inside heat transfer coefficient, predicting flow around the outside of the coil, and upon constant heat flux.[22]

Spiral

[edit]
Schematic drawing of a spiral heat exchanger

A modification to the perpendicular flow of the typical HCHE involves the replacement of shell with another coiled tube, allowing the two fluids to flow parallel to one another, and which requires the use of different design calculations.[23] These are the Spiral Heat Exchangers (SHE), which may refer to a helical (coiled) tube configuration, more generally, the term refers to a pair of flat surfaces that are coiled to form the two channels in a counter-flow arrangement. Each of the two channels has one long curved path. A pair of fluid ports are connected tangentially to the outer arms of the spiral, and axial ports are common, but optional.[24]

The main advantage of the SHE is its highly efficient use of space. This attribute is often leveraged and partially reallocated to gain other improvements in performance, according to well known tradeoffs in heat exchanger design. (A notable tradeoff is capital cost vs operating cost.) A compact SHE may be used to have a smaller footprint and thus lower all-around capital costs, or an oversized SHE may be used to have less pressure drop, less pumping energy, higher thermal efficiency, and lower energy costs.

Construction

[edit]

The distance between the sheets in the spiral channels is maintained by using spacer studs that were welded prior to rolling. Once the main spiral pack has been rolled, alternate top and bottom edges are welded and each end closed by a gasketed flat or conical cover bolted to the body. This ensures no mixing of the two fluids occurs. Any leakage is from the periphery cover to the atmosphere, or to a passage that contains the same fluid.[25]

Self cleaning

[edit]

Spiral heat exchangers are often used in the heating of fluids that contain solids and thus tend to foul the inside of the heat exchanger. The low pressure drop lets the SHE handle fouling more easily. The SHE uses a “self cleaning” mechanism, whereby fouled surfaces cause a localized increase in fluid velocity, thus increasing the drag (or fluid friction) on the fouled surface, thus helping to dislodge the blockage and keep the heat exchanger clean. "The internal walls that make up the heat transfer surface are often rather thick, which makes the SHE very robust, and able to last a long time in demanding environments."[citation needed] They are also easily cleaned, opening out like an oven where any buildup of foulant can be removed by pressure washing.

Self-cleaning water filters are used to keep the system clean and running without the need to shut down or replace cartridges and bags.

Flow arrangements

[edit]
A comparison between the operations and effects of a cocurrent and a countercurrent flow exchange system is depicted by the upper and lower diagrams respectively. In both it is assumed (and indicated) that red has a higher value (e.g. of temperature) than blue and that the property being transported in the channels therefore flows from red to blue. Channels are contiguous if effective exchange is to occur (i.e. there can be no gap between the channels).

There are three main types of flows in a spiral heat exchanger:

  • Counter-current Flow: Fluids flow in opposite directions. These are used for liquid-liquid, condensing and gas cooling applications. Units are usually mounted vertically when condensing vapour and mounted horizontally when handling high concentrations of solids.
  • Spiral Flow/Cross Flow: One fluid is in spiral flow and the other in a cross flow. Spiral flow passages are welded at each side for this type of spiral heat exchanger. This type of flow is suitable for handling low density gas, which passes through the cross flow, avoiding pressure loss. It can be used for liquid-liquid applications if one liquid has a considerably greater flow rate than the other.
  • Distributed Vapour/Spiral flow: This design is that of a condenser, and is usually mounted vertically. It is designed to cater for the sub-cooling of both condensate and non-condensables. The coolant moves in a spiral and leaves via the top. Hot gases that enter leave as condensate via the bottom outlet.

Applications

[edit]

The Spiral heat exchanger is good for applications such as pasteurization, digester heating, heat recovery, pre-heating (see: recuperator), and effluent cooling. For sludge treatment, SHEs are generally smaller than other types of heat exchangers.[citation needed] These are used to transfer the heat.

Selection

[edit]

Due to the many variables involved, selecting optimal heat exchangers is challenging. Hand calculations are possible, but many iterations are typically needed. As such, heat exchangers are most often selected via computer programs, either by system designers, who are typically engineers, or by equipment vendors.

To select an appropriate heat exchanger, the system designers (or equipment vendors) would firstly consider the design limitations for each heat exchanger type. Though cost is often the primary criterion, several other selection criteria are important:

  • High/low pressure limits
  • Thermal performance
  • Temperature ranges
  • Product mix (liquid/liquid, particulates or high-solids liquid)
  • Pressure drops across the exchanger
  • Fluid flow capacity
  • Cleanability, maintenance and repair
  • Materials required for construction
  • Ability and ease of future expansion
  • Material selection, such as copper, aluminium, carbon steel, stainless steel, nickel alloys, ceramic, polymer, and titanium.[26][27]

Small-diameter coil technologies are becoming more popular in modern air conditioning and refrigeration systems because they have better rates of heat transfer than conventional sized condenser and evaporator coils with round copper tubes and aluminum or copper fin that have been the standard in the HVAC industry. Small diameter coils can withstand the higher pressures required by the new generation of environmentally friendlier refrigerants. Two small diameter coil technologies are currently available for air conditioning and refrigeration products: copper microgroove[28] and brazed aluminum microchannel.[citation needed]

Choosing the right heat exchanger (HX) requires some knowledge of the different heat exchanger types, as well as the environment where the unit must operate. Typically in the manufacturing industry, several differing types of heat exchangers are used for just one process or system to derive the final product. For example, a kettle HX for pre-heating, a double pipe HX for the 'carrier' fluid and a plate and frame HX for final cooling. With sufficient knowledge of heat exchanger types and operating requirements, an appropriate selection can be made to optimise the process.[29]

Monitoring and maintenance

[edit]

Online monitoring of commercial heat exchangers is done by tracking the overall heat transfer coefficient. The overall heat transfer coefficient tends to decline over time due to fouling.

By periodically calculating the overall heat transfer coefficient from exchanger flow rates and temperatures, the owner of the heat exchanger can estimate when cleaning the heat exchanger is economically attractive.

Integrity inspection of plate and tubular heat exchanger can be tested in situ by the conductivity or helium gas methods. These methods confirm the integrity of the plates or tubes to prevent any cross contamination and the condition of the gaskets.

Mechanical integrity monitoring of heat exchanger tubes may be conducted through Nondestructive methods such as eddy current testing.

Fouling

[edit]
A heat exchanger in a steam power station contaminated with macrofouling

Fouling occurs when impurities deposit on the heat exchange surface. Deposition of these impurities can decrease heat transfer effectiveness significantly over time and are caused by:

  • Low wall shear stress
  • Low fluid velocities
  • High fluid velocities
  • Reaction product solid precipitation
  • Precipitation of dissolved impurities due to elevated wall temperatures

The rate of heat exchanger fouling is determined by the rate of particle deposition less re-entrainment/suppression. This model was originally proposed in 1959 by Kern and Seaton.

Crude Oil Exchanger Fouling. In commercial crude oil refining, crude oil is heated from 21 °C (70 °F) to 343 °C (649 °F) prior to entering the distillation column. A series of shell and tube heat exchangers typically exchange heat between crude oil and other oil streams to heat the crude to 260 °C (500 °F) prior to heating in a furnace. Fouling occurs on the crude side of these exchangers due to asphaltene insolubility. The nature of asphaltene solubility in crude oil was successfully modeled by Wiehe and Kennedy.[30] The precipitation of insoluble asphaltenes in crude preheat trains has been successfully modeled as a first order reaction by Ebert and Panchal[31] who expanded on the work of Kern and Seaton.

Cooling Water Fouling. Cooling water systems are susceptible to fouling. Cooling water typically has a high total dissolved solids content and suspended colloidal solids. Localized precipitation of dissolved solids occurs at the heat exchange surface due to wall temperatures higher than bulk fluid temperature. Low fluid velocities (less than 3 ft/s) allow suspended solids to settle on the heat exchange surface. Cooling water is typically on the tube side of a shell and tube exchanger because it's easy to clean. To prevent fouling, designers typically ensure that cooling water velocity is greater than 0.9 m/s and bulk fluid temperature is maintained less than 60 °C (140 °F). Other approaches to control fouling control combine the "blind" application of biocides and anti-scale chemicals with periodic lab testing.

Maintenance

[edit]

Plate and frame heat exchangers can be disassembled and cleaned periodically. Tubular heat exchangers can be cleaned by such methods as acid cleaning, sandblasting, high-pressure water jet, bullet cleaning, or drill rods.

In large-scale cooling water systems for heat exchangers, water treatment such as purification, addition of chemicals, and testing, is used to minimize fouling of the heat exchange equipment. Other water treatment is also used in steam systems for power plants, etc. to minimize fouling and corrosion of the heat exchange and other equipment.

A variety of companies have started using water borne oscillations technology to prevent biofouling. Without the use of chemicals, this type of technology has helped in providing a low-pressure drop in heat exchangers.

Design and manufacturing regulations

[edit]

The design and manufacturing of heat exchangers has numerous regulations, which vary according to the region in which they will be used.

Design and manufacturing codes include: ASME Boiler and Pressure Vessel Code (US); PD 5500 (UK); BS 1566 (UK);[32] EN 13445 (EU); CODAP (French); Pressure Equipment Safety Regulations 2016 (PER) (UK); Pressure Equipment Directive (EU); NORSOK (Norwegian); TEMA;[33] API 12; and API 560.[citation needed]

In nature

[edit]

Humans

[edit]

The human nasal passages serve as a heat exchanger, with cool air being inhaled and warm air being exhaled. Its effectiveness can be demonstrated by putting the hand in front of the face and exhaling, first through the nose and then through the mouth. Air exhaled through the nose is substantially cooler.[34][35] This effect can be enhanced with clothing, by, for example, wearing a scarf over the face while breathing in cold weather.

In species that have external testes (such as human), the artery to the testis is surrounded by a mesh of veins called the pampiniform plexus. This cools the blood heading to the testes, while reheating the returning blood.

Birds, fish, marine mammals

[edit]
Counter-current exchange conservation circuit

"Countercurrent" heat exchangers occur naturally in the circulatory systems of fish, whales and other marine mammals. Arteries to the skin carrying warm blood are intertwined with veins from the skin carrying cold blood, causing the warm arterial blood to exchange heat with the cold venous blood. This reduces the overall heat loss in cold water. Heat exchangers are also present in the tongues of baleen whales as large volumes of water flow through their mouths.[36][37] Wading birds use a similar system to limit heat losses from their body through their legs into the water.

Carotid rete

[edit]

Carotid rete is a counter-current heat exchanging organ in some ungulates. The blood ascending the carotid arteries on its way to the brain, flows via a network of vessels where heat is discharged to the veins of cooler blood descending from the nasal passages. The carotid rete allows Thomson's gazelle to maintain its brain almost 3 °C (5.4 °F) cooler than the rest of the body, and therefore aids in tolerating bursts in metabolic heat production such as associated with outrunning cheetahs (during which the body temperature exceeds the maximum temperature at which the brain could function).[38] Humans with other primates lack a carotid rete.[39]

In industry

[edit]

Heat exchangers are widely used in industry both for cooling and heating large scale industrial processes. The type and size of heat exchanger used can be tailored to suit a process depending on the type of fluid, its phase, temperature, density, viscosity, pressures, chemical composition and various other thermodynamic properties.

In many industrial processes there is waste of energy or a heat stream that is being exhausted, heat exchangers can be used to recover this heat and put it to use by heating a different stream in the process. This practice saves a lot of money in industry, as the heat supplied to other streams from the heat exchangers would otherwise come from an external source that is more expensive and more harmful to the environment.

Heat exchangers are used in many industries, including:

  • Waste water treatment
  • Refrigeration
  • Wine and beer making
  • Petroleum refining
  • Nuclear power

In waste water treatment, heat exchangers play a vital role in maintaining optimal temperatures within anaerobic digesters to promote the growth of microbes that remove pollutants. Common types of heat exchangers used in this application are the double pipe heat exchanger as well as the plate and frame heat exchanger.

In aircraft

[edit]

In commercial aircraft heat exchangers are used to take heat from the engine's oil system to heat cold fuel.[40] This improves fuel efficiency, as well as reduces the possibility of water entrapped in the fuel freezing in components.[41]

Current market and forecast

[edit]

Estimated at US$17.5 billion in 2021, the global demand of heat exchangers is expected to experience robust growth of about 5% annually over the next years. The market value is expected to reach US$27 billion by 2030. With an expanding desire for environmentally friendly options and increased development of offices, retail sectors, and public buildings, market expansion is due to grow.[42]

A model of a simple heat exchanger

[edit]

A simple heat exchange [43][44] might be thought of as two straight pipes with fluid flow, which are thermally connected. Let the pipes be of equal length L, carrying fluids with heat capacity (energy per unit mass per unit change in temperature) and let the mass flow rate of the fluids through the pipes, both in the same direction, be (mass per unit time), where the subscript i applies to pipe 1 or pipe 2.

Temperature profiles for the pipes are and where x is the distance along the pipe. Assume a steady state, so that the temperature profiles are not functions of time. Assume also that the only transfer of heat from a small volume of fluid in one pipe is to the fluid element in the other pipe at the same position, i.e., there is no transfer of heat along a pipe due to temperature differences in that pipe. By Newton's law of cooling the rate of change in energy of a small volume of fluid is proportional to the difference in temperatures between it and the corresponding element in the other pipe:

( this is for parallel flow in the same direction and opposite temperature gradients, but for counter-flow heat exchange countercurrent exchange the sign is opposite in the second equation in front of ), where is the thermal energy per unit length and γ is the thermal connection constant per unit length between the two pipes. This change in internal energy results in a change in the temperature of the fluid element. The time rate of change for the fluid element being carried along by the flow is:

where is the "thermal mass flow rate". The differential equations governing the heat exchanger may now be written as:

Since the system is in a steady state, there are no partial derivatives of temperature with respect to time, and since there is no heat transfer along the pipe, there are no second derivatives in x as is found in the heat equation. These two coupled first-order differential equations may be solved to yield:

where , ,

(this is for parallel-flow, but for counter-flow the sign in front of is negative, so that if , for the same "thermal mass flow rate" in both opposite directions, the gradient of temperature is constant and the temperatures linear in position x with a constant difference along the exchanger, explaining why the counter current design countercurrent exchange is the most efficient )

and A and B are two as yet undetermined constants of integration. Let and be the temperatures at x=0 and let and be the temperatures at the end of the pipe at x=L. Define the average temperatures in each pipe as:

Using the solutions above, these temperatures are:

        

Choosing any two of the temperatures above eliminates the constants of integration, letting us find the other four temperatures. We find the total energy transferred by integrating the expressions for the time rate of change of internal energy per unit length:

By the conservation of energy, the sum of the two energies is zero. The quantity is known as the Log mean temperature difference, and is a measure of the effectiveness of the heat exchanger in transferring heat energy.

See also

[edit]
  • Architectural engineering
  • Chemical engineering
  • Cooling tower
  • Copper in heat exchangers
  • Heat pipe
  • Heat pump
  • Heat recovery ventilation
  • Jacketed vessel
  • Log mean temperature difference (LMTD)
  • Marine heat exchangers
  • Mechanical engineering
  • Micro heat exchanger
  • Moving bed heat exchanger
  • Packed bed and in particular Packed columns
  • Pumpable ice technology
  • Reboiler
  • Recuperator, or cross plate heat exchanger
  • Regenerator
  • Run around coil
  • Steam generator (nuclear power)
  • Surface condenser
  • Toroidal expansion joint
  • Thermosiphon
  • Thermal wheel, or rotary heat exchanger (including enthalpy wheel and desiccant wheel)
  • Tube tool
  • Waste heat

References

[edit]
  1. ^ Al-Sammarraie, Ahmed T.; Vafai, Kambiz (2017). "Heat transfer augmentation through convergence angles in a pipe". Numerical Heat Transfer, Part A: Applications. 72 (3): 197–214. Bibcode:2017NHTA...72..197A. doi:10.1080/10407782.2017.1372670. S2CID 125509773.
  2. ^ Sadik Kakaç; Hongtan Liu (2002). Heat Exchangers: Selection, Rating and Thermal Design (2nd ed.). CRC Press. ISBN 978-0-8493-0902-1.
  3. ^ Farzaneh, Mahsa; Forouzandeh, Azadeh; Al-Sammarraie, Ahmed T.; Salimpour, Mohammad Reza (2019). "Constructal Design of Circular Multilayer Microchannel Heat Sinks". Journal of Thermal Science and Engineering Applications. 11. doi:10.1115/1.4041196. S2CID 126162513.
  4. ^ a b Saunders, E. A. (1988). Heat Exchanges: Selection, Design and Construction. New York: Longman Scientific and Technical.
  5. ^ a b "MICROCHANNEL TECHNOLOGY" (PDF). Archived from the original (PDF) on June 4, 2013.
  6. ^ Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 978-0-07-034909-4.
  7. ^ Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill. ISBN 978-0-07-049479-4.
  8. ^ Air Pollution Control Orientation Course from website of the Air Pollution Training Institute
  9. ^ Energy savings in steam systems Archived 2007-09-27 at the Wayback Machine Figure 3a, Layout of surface condenser (scroll to page 11 of 34 PDF pages)
  10. ^ Coulson, J. & Richardson, J. (1983), Chemical Engineering – Design (SI Units), Volume 6, Pergamon Press, Oxford.
  11. ^ Hewitt G, Shires G, Bott T (1994), Process Heat Transfer, CRC Press Inc, Florida.
  12. ^ Table: Various Types of Gas – Liquid Direct Contact Heat Exchangers (Hewitt G, Shires G & Bott T, 1994)
  13. ^ Kee Robert J.; et al. (2011). "The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger". Applied Thermal Engineering. 31 (11): 2004–2012. doi:10.1016/j.applthermaleng.2011.03.009.
  14. ^ Northcutt B.; Mudawar I. (2012). "Enhanced design of cross-flow microchannel heat exchanger module for high-performance aircraft gas turbine engines". Journal of Heat Transfer. 134 (6): 061801. doi:10.1115/1.4006037.
  15. ^ Moallem E.; Padhmanabhan S.; Cremaschi L.; Fisher D. E. (2012). "Experimental investigation of the surface temperature and water retention effects on the frosting performance of a compact microchannel heat exchanger for heat pump systems". International Journal of Refrigeration. 35 (1): 171–186. doi:10.1016/j.ijrefrig.2011.08.010.
  16. ^ Sarvar-Ardeh, S., Rafee, R., Rashidi, S. (2021). Hybrid nanofluids with temperature-dependent properties for use in double-layered microchannel heat sink; hydrothermal investigation. Journal of the Taiwan Institute of Chemical Engineers. cite journal https://doi.org/10.1016/j.jtice.2021.05.007
  17. ^ Xu, B., Shi, J., Wang, Y., Chen, J., Li, F., & Li, D. (2014). Experimental Study of Fouling Performance of Air Conditioning System with Microchannel Heat Exchanger.
  18. ^ Patent 2,046,968 John C Raisley[dead link] issued July 7, 1936; filed Jan. 8, 1934 [1]
  19. ^ a b c d Patil, Ramachandra K.; Shende, B.W.; Ghosh, Prasanfa K. (13 December 1982). "Designing a helical-coil heat exchanger". Chemical Engineering. 92 (24): 85–88. Retrieved 14 July 2015.
  20. ^ a b Haraburda, Scott S. (July 1995). "Three-Phase Flow? Consider Helical-Coil Heat Exchanger". Chemical Engineering. 102 (7): 149–151. Retrieved 14 July 2015.
  21. ^ US 3805890, Boardman, Charles E. & Germer, John H., "Helical Coil Heat Exchanger", issued 1974 
  22. ^ Rennie, Timothy J. (2004). Numerical And Experimental Studies Of A Doublepipe Helical Heat Exchanger (PDF) (Ph.D.). Montreal: McGill University. pp. 3–4. Retrieved 14 July 2015.
  23. ^ Rennie, Timothy J.; Raghavan, Vijaya G.S. (September 2005). "Experimental studies of a double-pipe helical heat exchanger". Experimental Thermal and Fluid Science. 29 (8): 919–924. doi:10.1016/j.expthermflusci.2005.02.001.
  24. ^ "Cooling Text". Archived from the original on 2009-02-09. Retrieved 2019-09-09.
  25. ^ E.A.D.Saunders (1988). Heat Exchangers:Selection Design And Construction Longman Scientific and Technical ISBN 0-582-49491-5
  26. ^ Hartman, A. D.; Gerdemann, S. J.; Hansen, J. S. (1998-09-01). "Producing lower-cost titanium for automotive applications". JOM. 50 (9): 16–19. Bibcode:1998JOM....50i..16H. doi:10.1007/s11837-998-0408-1. ISSN 1543-1851. S2CID 92992840.
  27. ^ Nyamekye, Patricia; Rahimpour Golroudbary, Saeed; Piili, Heidi; Luukka, Pasi; Kraslawski, Andrzej (2023-05-01). "Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries". Advances in Industrial and Manufacturing Engineering. 6: 100112. doi:10.1016/j.aime.2023.100112. ISSN 2666-9129. S2CID 255534598. Archived from the original on Feb 4, 2024.
  28. ^ "Small Tube Copper Is Economical and Eco-Friendly | The MicroGroove Advantage". microgroove.net. Archived from the original on Dec 8, 2023.cite web: CS1 maint: unfit URL (link)
  29. ^
    • White, F.M. 'Heat and Mass Transfer' © 1988 Addison-Wesley Publishing Co. pp. 602–604
    • Rafferty, Kevin D. "Heat Exchangers". Gene Culver Geo-Heat Center. Geothermal Networks. Archived from the original on 2008-03-29. Last accessed 17/3/08.
    • "Process Heating". process-heating.com. BNP Media. Archived from the original on Mar 16, 2008. Last accessed 17/3/08.
  30. ^ Wiehe, Irwin A.; Kennedy, Raymond J. (1 January 2000). "The Oil Compatibility Model and Crude Oil Incompatibility". Energy & Fuels. 14 (1): 56–59. doi:10.1021/ef990133+.
  31. ^ Panchal C;B; and Ebert W., Analysis of Exxon Crude-Oil-Slip-Stream Coking Data, Proc of Fouling Mitigation of Industrial Heat-Exchanger Equipment, San Luis Obispo, California, USA, p 451, June 1995
  32. ^ Domestic heating compliance guide : compliance with approved documents L1A: New dwellings and L1B: Existing dwellings : the Building Regulations 2000 as amended 2006. London: TSO. 2006. ISBN 978-0-11-703645-1. OCLC 500282471.
  33. ^ Epstein, Norman (2014), "Design and construction codes", HEDH Multimedia, Begellhouse, doi:10.1615/hedhme.a.000413, ISBN 978-1-56700-423-6, retrieved 2022-04-12
  34. ^ Heat Loss from the Respiratory Tract in Cold, Defense Technical Information Center, April 1955
  35. ^ Randall, David J.; Warren W. Burggren; Kathleen French; Roger Eckert (2002). Eckert animal physiology: mechanisms and adaptations. Macmillan. p. 587. ISBN 978-0-7167-3863-3.
  36. ^ "Natural History Museum: Research & Collections: History". Archived from the original on 2009-06-14. Retrieved 2019-09-09.
  37. ^ Heyning and Mead; Mead, JG (November 1997). "Thermoregulation in the Mouths of Feeding Gray Whales". Science. 278 (5340): 1138–1140. Bibcode:1997Sci...278.1138H. doi:10.1126/science.278.5340.1138. PMID 9353198.
  38. ^ "Carotid rete cools brain : Thomson's Gazelle".
  39. ^ Bruner, Emiliano; Mantini, Simone; Musso, Fabio; De La Cuétara, José Manuel; Ripani, Maurizio; Sherkat, Shahram (2010-11-30). "The evolution of the meningeal vascular system in the human genus: From brain shape to thermoregulation". American Journal of Human Biology. 23 (1): 35–43. doi:10.1002/ajhb.21123. ISSN 1042-0533. PMID 21120884.
  40. ^ "United States Patent 4498525, Fuel/oil heat exchange system for an engine". United States Patent and Trademark Office. Retrieved 3 February 2009.
  41. ^ Croft, John. "Boeing links Heathrow, Atlanta Trent 895 engine rollbacks". FlightGlobal.com. Retrieved 3 February 2009.
  42. ^ Research, Straits (2022-07-06). "Heat Exchanger Market Size is projected to reach USD 27 Billion by 2030, growing at a CAGR of 5%: Straits Research". GlobeNewswire News Room (Press release). Retrieved 2022-07-15.
  43. ^ Kay J M & Nedderman R M (1985) Fluid Mechanics and Transfer Processes, Cambridge University Press
  44. ^ "MIT web course on Heat Exchangers". [MIT].
  • Coulson, J. and Richardson, J (1999). Chemical Engineering- Fluid Flow. Heat Transfer and Mass Transfer- Volume 1; Reed Educational & Professional Publishing LTD
  • Dogan Eryener (2005), 'Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers', Energy Conservation and Management, Volume 47, Issue 11–12, Pages 1478–1489.
  • G.F.Hewitt, G.L.Shires, T.R.Bott (1994) Process Heat Transfer, CRC Press, Inc, United States Of America.
[edit]
  • Shell and Tube Heat Exchanger Design Software for Educational Applications (PDF)
  • EU Pressure Equipment Guideline
  • A Thermal Management Concept For More Electric Aircraft Power System Application (PDF)

 

 

Air pollution from a coking oven
2016 Environmental Performance Index – darker colors indicate lower concentrations of fine particulate matter and nitrogen dioxide, as well as better indoor air quality.
Deaths from air pollution per 100,000 inhabitants (IHME, 2019)

Air pollution is the contamination of air due to the presence of substances called pollutants in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials.[1] It is also the contamination of the indoor or outdoor environment either by chemical, physical, or biological agents that alters the natural features of the atmosphere.[1] There are many different types of air pollutants, such as gases (including ammonia, carbon monoxide, sulfur dioxide, nitrous oxides, methane and chlorofluorocarbons), particulates (both organic and inorganic) and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and crops, and may damage the natural environment (for example, climate change, ozone depletion or habitat degradation) or built environment (for example, acid rain).[2] Air pollution can be caused by both human activities[3] and natural phenomena.[4]

Air quality is closely related to the Earth's climate and ecosystems globally. Many of the contributors of air pollution are also sources of greenhouse emission i.e., burning of fossil fuel.[1]

Air pollution is a significant risk factor for a number of pollution-related diseases, including respiratory infections, heart disease, chronic obstructive pulmonary disease (COPD), stroke, and lung cancer.[5] Growing evidence suggests that air pollution exposure may be associated with reduced IQ scores, impaired cognition,[6] increased risk for psychiatric disorders such as depression[7] and detrimental perinatal health.[8] The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system.[9][10] Individual reactions to air pollutants depend on the type of pollutant a person is exposed to,[11][12] the degree of exposure, and the individual's health status and genetics.[13]

Air pollution is the largest environmental risk factor for disease and premature death[5][14] and the fourth largest risk factor overall for human health.[15] Air pollution causes the premature deaths of around 7 million people worldwide each year,[5] or a global mean loss of life expectancy (LLE) of 2.9 years,[16] and there has been no significant change in the number of deaths caused by all forms of pollution since at least 2015.[14][17][18] Outdoor air pollution attributable to fossil fuel use alone causes ~3.61 million deaths annually,[19] making it one of the top contributors to human death.[5] Anthropogenic ozone causes around 470,000 premature deaths a year and fine particulate (PM2.5) pollution around another 2.1 million.[20] The scope of the air pollution crisis is large: In 2018, WHO estimated that "9 out of 10 people breathe air containing high levels of pollutants."[21] Although the health consequences are extensive, the way the problem is handled is considered largely haphazard[22][21][23] or neglected.[14]

The World Bank has estimated that welfare losses (premature deaths) and productivity losses (lost labour) caused by air pollution cost the world economy $5 trillion per year.[24][25][26] The costs of air pollution are generally an externality to the contemporary economic system and most human activity, although they are sometimes recovered through monitoring, legislation, and regulation.[27][28]

Many different technologies and strategies are available for reducing air pollution.[29] Although a majority of countries have air pollution laws, according to UNEP, 43 percent of countries lack a legal definition of air pollution, 31 percent lack outdoor air quality standards, 49 percent restrict their definition to outdoor pollution only, and just 31 percent have laws for tackling pollution originating from outside their borders.[30] National air quality laws have often been highly effective, notably the 1956 Clean Air Act in Britain and the US Clean Air Act, introduced in 1963.[31][32] Some of these efforts have been successful at the international level, such as the Montreal Protocol,[33] which reduced the release of harmful ozone depleting chemicals, and the 1985 Helsinki Protocol,[34] which reduced sulfur emissions,[35] while others, such as international action on climate change,[36][37][38] have been less successful.

Sources of air pollution

[edit]

There are many different sources of air pollution. Some air pollutants (such as nitrogen oxides) originate mainly from human activities,[39] while some (notably radon gas) come mostly from natural sources.[40] However, many air pollutants (including dust and sulfur dioxide) come from a mixture of natural and human sources.[41]

Anthropogenic (human-made) sources

[edit]
Demolition of the cooling towers of a power station, Athlone, Cape Town, South Africa, 2010
Controlled burning of a field outside of Statesboro, Georgia, US, in preparation for spring planting
Smoking of fish over an open fire in Ghana, 2018
Burning of joss paper in a Chinese temple in Hong Kong
  • Stationary sources include:
    • fossil-fuel power plants and biomass power plants both have smoke stacks (see for example environmental impact of the coal industry)[42]
      • Oil and gas sites that have methane leaks[43][44][45][46]
    • burning of traditional biomass such as wood, crop waste and dung. (In developing and poor countries,[47] traditional biomass burning is the major source of air pollutants.[48][49] It is also the main source of particulate pollution in many developed areas including the UK & New South Wales.[50][51] Its pollutants include PAHs.[52])
    • manufacturing facilities (factories)[53]
      • a 2014 study found that in China equipment-, machinery-, and devices-manufacturing and construction sectors contributed more than 50% of air pollutant emissions.[54][better source needed] This high emission is due to high emission intensity and high emission factors in its industrial structure.[55]
    • construction[56][57]
    • renovation[58]
    • waste incineration (incinerators as well as open and uncontrolled fires of mismanaged waste, making up about a fourth of municipal solid terrestrial waste)[59][60]
    • furnaces and other types of fuel-burning heating devices[61]
  • Mobile sources include motor vehicles, trains (particularly diesel locomotives and DMUs), marine vessels and aircraft[62] as well as rockets and re-entry of components and debris.[63] The air pollution externality of cars enters the air from the exhaust gas and car tires (including microplastics[64]). Road vehicles make a significant amount of all air pollution (typically, for example, around a third to a half of all nitrogen dioxide emissions)[65][66][67] and are a major driver of climate change.[68][69]
  • Agriculture and forest management strategies using controlled burns. Practices like slash-and-burn in forests like the Amazon cause large air pollution with the deforestation.[70] Controlled or prescribed burning is a practice used in forest management, agriculture, prairie restoration, and greenhouse gas reduction.[71] Foresters can use controlled fire as a tool because fire is a natural feature of both forest and grassland ecology.[72][73] Controlled burning encourages the sprouting of some desirable forest trees, resulting in a forest renewal.[74]

There are also sources from processes other than combustion:

  • Fumes from paint, hair spray, varnish, aerosol sprays and other solvents. These can be substantial; emissions from these sources was estimated to account for almost half of pollution from volatile organic compounds in the Los Angeles basin in the 2010s.[75]
  • Waste deposition in landfills produces methane[76] and open burning of waste releases harmful substances.[77]
  • Nuclear weapons, toxic gases, germ warfare, and rocketry are examples of military resources.[78]
  • Agricultural emissions and emissions from meat production or livestock contribute substantially to air pollution[79][80]
    • Fertilized farmland may be a major source of nitrogen oxides.[81]
Mean acidifying emissions (air pollution) of different foods per 100g of protein[82]
Food Types Acidifying Emissions (g SO2eq per 100g protein)
Beef
 
343.6
Cheese
 
165.5
Pork
 
142.7
Lamb and mutton
 
139.0
Farmed crustaceans
 
133.1
Poultry
 
102.4
Farmed fish
 
65.9
Eggs
 
53.7
Groundnuts
 
22.6
Peas
 
8.5
Tofu
 
6.7

Natural sources

[edit]
Dust storm approaching Stratford, Texas, in 1935
  • Dust from natural sources, usually large areas of land with little or no vegetation.
  • Methane, emitted by the digestion of food by animals, for example cattle.
  • Radon gas from radioactive decay within the Earth's crust. Radon is a colorless, odorless, naturally occurring, radioactive noble gas that is formed from the decay of radium. It is considered to be a health hazard. Radon gas from natural sources can accumulate in buildings, especially in confined areas such as the basement and it is the second most frequent cause of lung cancer, after cigarette smoking.
  • Smoke and carbon monoxide from wildfires. During periods of active wildfires, smoke from uncontrolled biomass combustion can make up almost 75% of all air pollution by concentration.[83]
  • Vegetation, in some regions, emits environmentally significant amounts of volatile organic compounds (VOCs) on warmer days. These VOCs react with primary anthropogenic pollutants – specifically, NOx, SO2, and anthropogenic organic carbon compounds – to produce a seasonal haze of secondary pollutants.[84] Black gum, poplar, oak and willow are some examples of vegetation that can produce abundant VOCs. The VOC production from these species result in ozone levels up to eight times higher than the low-impact tree species.[85]
  • Volcanic activity, which produces sulfur, chlorine, and ash particulates.[86]

Emission factors

[edit]
Beijing air in 2005 after rain (left) and a smoggy day (right)

Air pollutant emission factors are reported representative values that aim to link the quantity of a pollutant released into the ambient air to an activity connected with that pollutant's release.[2][87][88][89] The weight of the pollutant divided by a unit weight, volume, distance, or time of the activity generating the pollutant is how these factors are commonly stated (e.g., kilograms of particulate emitted per tonne of coal burned). These criteria make estimating emissions from diverse sources of pollution easier. Most of the time, these components are just averages of all available data of acceptable quality, and they are thought to be typical of long-term averages.

The Stockholm Convention on Persistent Organic Pollutants identified pesticides and other persistent organic pollutants of concern. These include dioxins and furans which are unintentionally created by combustion of organics, like open burning of plastics, and are endocrine disruptors and mutagens.

E-waste processing in Agbogbloshie, Ghana, using open-burning of electronics to access valuable metals like copper. Open burning of plastics is common in many parts of the world without the capacity for processing. Especially without proper protections, heavy metals and other contaminates can seep into the soil, and create water pollution and air pollution.

The United States Environmental Protection Agency has published a compilation of air pollutant emission factors for a wide range of industrial sources.[90] The United Kingdom, Australia, Canada, and many other countries have published similar compilations, as well as the European Environment Agency.[91][92][93][94]

Pollutants

[edit]
Schematic drawing, causes and effects of air pollution: (1) greenhouse effect, (2) particulate contamination, (3) increased UV radiation, (4) acid rain, (5) increased ground-level ozone concentration, (6) increased levels of nitrogen oxides

An air pollutant is a material in the air that can have many effects on humans and the ecosystem.[95] The substance can be solid particles, liquid droplets, or gases, and often takes the form of an aerosol (solid particles or liquid droplets dispersed and carried by a gas).[96] A pollutant can be of natural origin or man-made. Pollutants are classified as primary or secondary. Primary pollutants are usually produced by processes such as ash from a volcanic eruption.

Other examples include carbon monoxide gas from motor vehicle exhausts or sulfur dioxide released from factories. Secondary pollutants are not emitted directly. Rather, they form in the air when primary pollutants react or interact. Ground level ozone is a prominent example of a secondary pollutant. Some pollutants may be both primary and secondary: they are both emitted directly and formed from other primary pollutants.

Primary pollutants

[edit]

Pollutants emitted into the atmosphere by human activity include:

  • Ammonia: Emitted mainly by agricultural waste. Ammonia is a compound with the formula NH3. It is normally encountered as a gas with a characteristic pungent odor. Ammonia contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to foodstuffs and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceuticals. Although in wide use, ammonia is both caustic and hazardous.[97] In the atmosphere, ammonia reacts with oxides of nitrogen and sulfur to form secondary particles.[98]
  • Carbon dioxide (CO2): Carbon dioxide is a natural component of the atmosphere, essential for plant life and given off by the human respiratory system.[99] It is potentially lethal at very high concentrations (typically 100 times "normal" atmospheric levels).[100][101] Although the World Health Organization recognizes CO2 as a climate pollutant, it does not include the gas in its Air Quality Guidelines or set recommended targets for it.[102] Because of its role as a greenhouse gas, CO2 has been described as "the worst climate pollutant".[103] Statements such as this refer to its long-term atmospheric effects rather than shorter-term effects on such things as human health, food crops, and buildings. This question of terminology has practical consequences, for example, in determining whether the U.S. Clean Air Act (which is designed to improve air quality) is deemed to regulate CO2 emissions.[104] That issue was resolved in the United States by the Inflation Reduction Act of 2022, which specifically amended the Clean Air Act "to define the carbon dioxide produced by the burning of fossil fuels as an 'air pollutant.'"[105] CO2 currently forms about 410 parts per million (ppm) of Earth's atmosphere, compared to about 280 ppm in pre-industrial times,[106] and billions of metric tons of CO2 are emitted annually by burning of fossil fuels.[107] CO2 increase in Earth's atmosphere has been accelerating.[108] CO2 is an asphyxiant gas and not classified as toxic or harmful in general.[109] Workplace exposure limits exist in places like UK (5,000 ppm for long-term exposure and 15,000 ppm for short-term exposure).[101] Natural disasters like the limnic eruption at Lake Nyos can result in a sudden release of huge amount of CO2 as well.[110]
  • Carbon monoxide (CO): CO is a colorless, odorless, toxic gas.[111] It is a product of combustion of fuel such as natural gas, coal or wood. Vehicular exhaust contributes to the majority of carbon monoxide let into the atmosphere. It creates a smog type formation in the air that has been linked to many lung diseases and disruptions to the natural environment and animals.
  • Chlorofluorocarbons (CFCs): Emitted from goods that are now prohibited from use; harmful to the ozone layer. These are gases emitted by air conditioners, freezers, aerosol sprays, and other similar devices. CFCs reach the stratosphere after being released into the atmosphere.[112] They interact with other gases here, causing harm to the ozone layer. UV rays are able to reach the Earth's surface as a result of this. This can result in skin cancer, eye problems, and even plant damage.[113]
  • Nitrogen oxides (NOx): Nitrogen oxides, particularly nitrogen dioxide, are expelled from high temperature combustion, and are also produced during thunderstorms by electric discharge. They can be seen as a brown haze dome above or a plume downwind of cities. Nitrogen dioxide is a chemical compound with the formula NO2. It is one of several nitrogen oxides. One of the most prominent air pollutants, this reddish-brown toxic gas has a characteristic sharp, biting odor.
  • Odors: Such as from garbage, sewage, and industrial processes.
  • Particulate matter/particles (PM), also known as particulates, atmospheric particulate matter (APM), or fine particles, are microscopic solid or liquid particles suspended in a gas.[114] Aerosol is a mixture of particles and gas. Volcanoes, dust storms, forest and grassland fires, living plants, and sea spray are all sources of particles. Aerosols are produced by human activities such as the combustion of fossil fuels in automobiles, power plants, and numerous industrial processes.[115] Averaged worldwide, anthropogenic aerosols – those made by human activities – currently account for approximately 10% of the atmosphere. Increased levels of fine particles in the air are linked to health hazards such as heart disease,[116] altered lung function and lung cancer. Particulates are related to respiratory infections and can be particularly harmful to those with conditions like asthma.[117]
  • Persistent organic pollutants, which can attach to particulates. Persistent organic pollutants are organic compounds that are resistant to environmental degradation due to chemical, biological, or photolytic processes (POPs). As a result, they've been discovered to survive in the environment, be capable of long-range transmission, bioaccumulate in human and animal tissue, biomagnify in food chains, and pose a major threat to human health and the ecosystem.[118]
  • Persistent free radicals connected to airborne fine particles are linked to cardiopulmonary disease.[119][120]
  • Polycyclic Aromatic Hydrocarbons (PAHs): a group of aromatic compounds formed from the incomplete combustion of organic compounds including coal and oil and tobacco.[121]
  • Radioactive pollutants: Produced by nuclear explosions, nuclear events, war explosives, and natural processes such as the radioactive decay of radon.
  • Sulfur oxides (SOx): particularly sulfur dioxide, a chemical compound with the formula SO2. SO2 is produced by volcanoes and in various industrial processes. Coal and petroleum often contain sulfur compounds, and their combustion generates sulfur dioxide. Further oxidation of SO2, usually in the presence of a catalyst such as NO2, forms H2SO4, and thus acid rain is formed. This is one of the causes for concern over the environmental impact of the use of these fuels as power sources.
  • Toxic metals, such as lead and mercury, especially their compounds.
  • Volatile organic compounds (VOC): VOCs are both indoor and outdoor air pollutants.[122] They are categorized as either methane (CH4) or non-methane (NMVOCs). Methane is an extremely efficient greenhouse gas which contributes to enhanced global warming. Other hydrocarbon VOCs are also significant greenhouse gases because of their role in creating ozone and prolonging the life of methane in the atmosphere. This effect varies depending on local air quality. The aromatic NMVOCs benzene, toluene and xylene are suspected carcinogens and may lead to leukemia with prolonged exposure. 1,3-butadiene is another dangerous compound often associated with industrial use.

Secondary pollutants

[edit]

Secondary pollutants include:

  • Ground level ozone (O3): Ozone is created when NOx and VOCs mix. It is a significant part of the troposphere.[123] It's also an important part of the ozone layer, which can be found in different sections of the stratosphere. Photochemical and chemical reactions involving it fuel many of the chemical activities that occur in the atmosphere during the day and night. It is a pollutant and a component of smog that is produced in large quantities as a result of human activities (mostly the combustion of fossil fuels).[124] O3 is largely produced by chemical reactions involving NOx gases (nitrogen oxides, especially from combustion) and volatile organic compounds in the presence of sunlight. Due to the influence of temperature and sunlight on this reaction, high ozone levels are most common on hot summer afternoons.[125]
  • Peroxyacetyl nitrate (C2H3NO5): similarly formed from NOx and VOCs.
  • Photochemical smog: particles are formed from gaseous primary contaminants and chemicals.[126] Smog is a type of pollution that occurs in the atmosphere. Smog is caused by a huge volume of coal being burned in a certain region, resulting in a mixture of smoke and sulfur dioxide.[127] Modern smog is usually caused by automotive and industrial emissions, which are acted on in the atmosphere by UV light from the sun to produce secondary pollutants, which then combine with the primary emissions to generate photochemical smog.

Other pollutants

[edit]

There are many other chemicals classed as hazardous air pollutants. Some of these are regulated in the USA under the Clean Air Act and in Europe under numerous directives (including the Air "Framework" Directive, 96/62/EC, on ambient air quality assessment and management, Directive 98/24/EC, on risks related to chemical agents at work, and Directive 2004/107/EC covering heavy metals and polycyclic aromatic hydrocarbons in ambient air).[128][129]

To display all pages, subcategories and images click on the "â–º":
Hazardous air pollutants (4 C, 68 P)

Exposure

[edit]

The risk of air pollution is determined by the pollutant's hazard and the amount of exposure to that pollutant. Air pollution exposure can be measured for a person, a group, such as a neighborhood or a country's children, or an entire population. For example, one would want to determine a geographic area's exposure to a dangerous air pollution, taking into account the various microenvironments and age groups. This can be calculated[130] as an inhalation exposure. This would account for daily exposure in various settings, e.g. different indoor micro-environments and outdoor locations. The exposure needs to include different ages and other demographic groups, especially infants, children, pregnant women, and other sensitive subpopulations.[130]

For each specific time that the subgroup is in the setting and engaged in particular activities, the exposure to an air pollutant must integrate the concentrations of the air pollutant with regard to the time spent in each setting and the respective inhalation rates for each subgroup, playing, cooking, reading, working, spending time in traffic, etc. A little child's inhaling rate, for example, will be lower than that of an adult. A young person engaging in strenuous exercise will have a faster rate of breathing than a child engaged in sedentary activity. The daily exposure must therefore include the amount of time spent in each micro-environmental setting as well as the kind of activities performed there. The air pollutant concentration in each microactivity/microenvironmental setting is summed to indicate the exposure.[130]

For some pollutants such as black carbon, traffic related exposures may dominate total exposure despite short exposure times since high concentrations coincide with proximity to major roads or participation in (motorized) traffic.[131] A large portion of total daily exposure occurs as short peaks of high concentrations, but it remains unclear how to define peaks and determine their frequency and health impact.[132]

In 2021, the WHO halved its recommended guideline limit for tiny particles from burning fossil fuels. The new limit for nitrogen dioxide (NO2) is 75% lower.[133] Growing evidence that air pollution—even when experienced at very low levels—hurts human health, led the WHO to revise its guideline (from 10 μg/m3 to 5 μg/m3) for what it considers a safe level of exposure of particulate pollution, bringing most of the world—97.3 percent of the global population—into the unsafe zone.[134]

Indoor air quality

[edit]
The share of total deaths from indoor air pollution, 2017
Air quality monitoring, New Delhi, India

A lack of ventilation indoors concentrates air pollution where people often spend the majority of their time. Indoor air pollution can pose a significant health risk. According to EPA reports, the concentrations of many air pollutants can be two to five times higher in indoor air than in outdoor air. Indoor air pollutants can be up to 100 times higher in some cases than they are inside. People can spend up to 90% of their time indoors, according to the American Lung Association; the US Consumer Product Safety Commission (CPSC) 2012; and the US Environmental Protection Agency 2012a.[135]

Indoor contaminants that can cause pollution include asbestos, biologic agents, building materials, radon, tobacco smoke, and wood stoves, gas ranges, or other heating systems.[135]

Radon (Rn) gas, a carcinogen, is exuded from the Earth in certain locations and trapped inside houses. Building materials including carpeting and plywood emit formaldehyde (H-CHO) gas. Paint and solvents give off volatile organic compounds (VOCs) as they dry. Lead paint can degenerate into dust and be inhaled.[136][137]

Intentional air pollution is introduced with the use of air fresheners, incense, and other scented items. Controlled wood fires in cook stoves and fireplaces can add significant amounts of harmful smoke particulates into the air, inside and out.[136][137] Indoor pollution fatalities may be caused by using pesticides and other chemical sprays indoors without proper ventilation. Also the kitchen in a modern produce harmful particles and gases, with equipment like toasters being one of the worst sources.[138]

Carbon monoxide poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of charcoal indoors or in a confined space, such as a tent.[139] Chronic carbon monoxide poisoning can result even from poorly-adjusted pilot lights. Traps are built into all domestic plumbing to keep sewer gas and hydrogen sulfide, out of interiors. Clothing emits tetrachloroethylene, or other dry cleaning fluids, for days after dry cleaning.

Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. Asbestosis is a chronic inflammatory medical condition affecting the tissue of the lungs. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Those with asbestosis have severe dyspnea (shortness of breath) and are at an increased risk regarding several different types of lung cancer. As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the World Health Organization,[140] these may be defined as asbestosis, lung cancer, and peritoneal mesothelioma (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).

Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micrometre-sized fecal droppings, inhabitants emit methane, mold forms on walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.

Health effects

[edit]

Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs but principally affect the body's respiratory system and the cardiovascular system. Afflictions include minor to chronic upper respiratory irritation such as difficulty in breathing, wheezing, coughing, asthma[141] and heart disease, lung cancer, stroke, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks.

Short and long term exposures have been linked with premature mortality and reduced life expectancy[142] and can result in increased medication use, increased doctor or emergency department visits, more hospital admissions and premature death.[130][better source needed] Diseases that develop from persistent exposure to air pollution are environmental health diseases, which develop when a health environment is not maintained.[143]

Even at levels lower than those considered safe by United States regulators, exposure to three components of air pollution, fine particulate matter, nitrogen dioxide and ozone, correlates with cardiac and respiratory illness.[144] Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, and the individual's health status and genetics.[130] The most common sources of air pollution include particulates and ozone (often from burning fossil fuels),[145] nitrogen dioxide, and sulfur dioxide. Children aged less than five years who live in developing countries are the most vulnerable population to death attributable to indoor and outdoor air pollution.[146]

Under the Clean Air Act, U.S. EPA sets limits on certain air pollutants, including setting limits on how much can be in the air anywhere in the United States.[147] Mixed exposure to both carbon black and ozone could result in significantly greater health affects.[148]

Mortality

[edit]
Estimates of the death toll from air pollution vary across publications.
Deaths caused by accidents and air pollution from fossil fuel use in power plants exceed those caused by production of renewable energy.[149]
Estimated annual number of deaths attributed to air pollution in 2019. This includes three categories of air pollution: indoor household, outdoor particulate matter and ozone.

Estimates of deaths toll due to air pollution vary.[150] In 2014 the World Health Organization estimated that every year air pollution causes the premature death of 7 million people worldwide,[5] 1 in 8 deaths worldwide.[151] A study published in 2019 indicated that in 2015 the number may be closer to 8.8 million, with 5.5 million of these premature deaths due to air pollution from anthropogenic sources.[152][153] A 2022 review concluded that in 2019 air pollution was responsible for approximately 9 million premature deaths. It concluded that since 2015 little real progress against pollution has been made.[14][154] Causes of deaths include strokes, heart disease, COPD, lung cancer, and lung infections.[5] Children are particularly at risk.[155]

In 2021, the WHO reported that outdoor air pollution was estimated to cause 4.2 million premature deaths worldwide in 2019.[156]

The global mean loss of life expectancy (LLE; similar to YPLL) from air pollution in 2015 was 2.9 years, substantially more than, for example, 0.3 years from all forms of direct violence.[16] Communities with persons that live beyond 85 years have low ambient air pollution, suggesting a link between air pollution levels and longevity.[157]

Primary mechanisms

[edit]

The WHO estimates that in 2016, ~58% of outdoor air pollution-related premature deaths were due to ischaemic heart disease and stroke.[156] The mechanisms linking air pollution to increased cardiovascular mortality are uncertain, but probably include pulmonary and systemic inflammation.[158]

By region

[edit]

India and China have the highest death rate due to air pollution.[159][160] India also has more deaths from asthma than any other nation according to the World Health Organization. In 2019, 1.6 million deaths in India were caused by air pollution.[161] In 2013, air pollution was estimated to kill 500,000 people in China each year.[162] In 2012, 2.48% of China's total air pollution emissions were caused by exports due to US demand, causing an additional 27,963 deaths across 30 provinces.[163]

Annual premature European deaths caused by air pollution are estimated at 430,000[164] to 800,000.[153] An important cause of these deaths is nitrogen dioxide and other nitrogen oxides (NOx) emitted by road vehicles.[164] Across the European Union, air pollution is estimated to reduce life expectancy by almost nine months.[165] In a 2015 consultation document the UK government disclosed that nitrogen dioxide is responsible for 23,500 premature UK deaths per annum.[166] There is a positive correlation between pneumonia-related deaths and air pollution from motor vehicle emissions in England.[167]

Eliminating energy-related fossil fuel emissions in the United States would prevent 46,900–59,400 premature deaths each year and provide $537–$678 billion in benefits from avoided PM2.5-related illness and death.[168]

A study published in 2023 in Science focused on sulfur dioxide emissions by coal power plants (coal PM2.5) and concluded that "exposure to coal PM2.5 was associated with 2.1 times greater mortality risk than exposure to PM2.5 from all sources."[169] From 1999 to 2020, a total of 460,000 deaths in the US were attributed to coal PM2.5.[169]

Air pollution deaths by nation due to fossil fuels

Major causes

[edit]
A comparison of footprint-based and transboundary pollution-based relationships among G20 nations for the number of PM2.5-related premature deaths[170]

The largest cause of air pollution is fossil fuel combustion[171] – mostly the production and use of cars, electricity production, and heating.[172] There are estimated 4.5 million annual premature deaths worldwide due to pollutants released by high-emission power stations and vehicle exhausts.[173]

Diesel exhaust (DE) is a major contributor to combustion-derived particulate matter air pollution. In several human experimental studies, using a well-validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation.[174][175]

A study concluded that PM2.5 air pollution induced by the contemporary free trade and consumption by the 19 G20 nations causes two million premature deaths annually, suggesting that the average lifetime consumption of about ~28 people in these countries causes at least one premature death (average age ~67) while developing countries "cannot be expected" to implement or be able to implement countermeasures without external support or internationally coordinated efforts.[176][170]

Guidelines

[edit]

The US EPA has estimated that limiting ground-level ozone concentration to 65 parts per billion (ppb), would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the 75 ppb standard. The agency projected the more protective standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school.[177][178] Following this assessment, the EPA acted to protect public health by lowering the National Ambient Air Quality Standards (NAAQS) for ground-level ozone to 70 ppb.[179]

A 2008 economic study of the health impacts and associated costs of air pollution in the Los Angeles Basin and San Joaquin Valley of Southern California shows that more than 3,800 people die prematurely (approximately 14 years earlier than normal) each year because air pollution levels violate federal standards. The number of annual premature deaths is considerably higher than the fatalities related to auto collisions in the same area, which average fewer than 2,000 per year.[180][181][182] A 2021 study found that outdoor air pollution is associated with substantially increased mortality "even at low pollution levels below the current European and North American standards and WHO guideline values" shortly before the WHO adjusted its guidelines.[183][184]

Cardiovascular disease

[edit]

According to the Global Burden of Disease Study, air pollution is responsible for 19% of all cardiovascular deaths.[185][186] There is strong evidence linking both short- and long-term exposure to air pollution with cardiovascular disease mortality and morbidity, stroke, blood pressure, and ischemic heart diseases (IHD).[186]

Air pollution is a leading risk factor for stroke, particularly in developing countries where pollutant levels are highest.[187] A systematic analysis of 17 different risk factors in 188 countries found air pollution is associated with nearly one in three strokes (29%) worldwide (33.7% of strokes in developing countries versus 10.2% in developed countries).[187][188] In women, air pollution is not associated with hemorrhagic but with ischemic stroke.[189] Air pollution was found to be associated with increased incidence and mortality from coronary stroke.[190] Associations are believed to be causal and effects may be mediated by vasoconstriction, low-grade inflammation and atherosclerosis.[191] Other mechanisms such as autonomic nervous system imbalance have also been suggested.[192][193]

Lung disease

[edit]

Research has demonstrated increased risk of developing asthma[194] and chronic obstructive pulmonary disease (COPD)[195] from increased exposure to traffic-related air pollution. Air pollution has been associated with increased hospitalization and mortality from asthma and COPD.[196][197]

COPD comprises a spectrum of clinical disorders that include emphysema, bronchiectasis, and chronic bronchitis.[198] COPD risk factors are both genetic and environmental. Elevated particle pollution contributes to the exacerbation of this disease and likely its pathogenesis.[199]

The risk of lung disease from air pollution is greatest for infants and young children, whose normal breathing is faster than that of older children and adults; the elderly; those who work outside or spend a lot of time outside; and those who have heart or lung disease comorbidities.[200]

A study conducted in 1960–1961 in the wake of the Great Smog of 1952 compared 293 London residents with 477 residents of Gloucester, Peterborough, and Norwich, three towns with low reported death rates from chronic bronchitis. All subjects were male postal truck drivers aged 40 to 59. Compared to the subjects from the outlying towns, the London subjects exhibited more severe respiratory symptoms (including cough, phlegm, and dyspnea), reduced lung function (FEV1 and peak flow rate), and increased sputum production and purulence. The differences were more pronounced for subjects aged 50 to 59. The study controlled for age and smoking habits, so concluded that air pollution was the most likely cause of the observed differences.[201] More studies have shown that air pollution exposure from traffic reduces lung function development in children[202] and lung function may be compromised by air pollution even at low concentrations.[203]

It is believed that, much like cystic fibrosis, serious health hazards become more apparent when living in a more urban environment. Studies have shown that in urban areas people experience mucus hypersecretion, lower levels of lung function, and more self-diagnosis of chronic bronchitis and emphysema.[204]

Cancer

[edit]
Dark factory clouds obscure the Clark Avenue Bridge in Cleveland, Ohio, July 1973.
Dark factory-emitted clouds obscuring the Clark Avenue Bridge in Cleveland, Ohio in July 1973

Around 300,000 lung cancer deaths were attributed globally in 2019 to exposure to fine particulate matter, PM2.5, suspended in the air.[205] PM2.5 exposure, such as from car exhausts, activates dormant mutations in lung cells, causing them to become cancerous.[206][205] Unprotected exposure to PM2.5 air pollution can be equivalent to smoking multiple cigarettes per day,[207][dead link] potentially increasing the risk of cancer, which is mainly the result of environmental factors.[208]

Long-term exposure to PM2.5 (fine particulates) increases the overall risk of non-accidental mortality by 6% per 10 μg/m3 increase. Exposure to PM2.5 is also associated with an increased risk of mortality from lung cancer (range: 15–21% per 10 μg/m3 increase) and total cardiovascular mortality (range: 12–14% per 10 μg/m3 increase).[209]

The review further noted that living close to busy traffic appears to be associated with elevated risks of these three outcomes – increase in lung cancer deaths, cardiovascular deaths, and overall non-accidental deaths. The reviewers also found suggestive evidence that exposure to PM2.5 is positively associated with mortality from coronary heart diseases and exposure to SO2 increases mortality from lung cancer, but the data was insufficient to provide solid conclusions.[209] Another investigation showed that higher activity level increases deposition fraction of aerosol particles in human lung and recommended avoiding heavy activities like running in outdoor space at polluted areas.[210]

In 2011, a large Danish epidemiological study found an increased risk of lung cancer for people who lived in areas with high nitrogen oxide concentrations.[211] Another Danish study, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer.[212]

Kidney disease

[edit]

A study of 163,197 Taiwanese residents over the period of 2001–2016 estimated that every 5 μg/m3 decrease (from an approximate peak of 30μg/m3) in the ambient concentration of PM2.5 was associated with a 25% reduced risk of chronic kidney disease development.[213] According to a cohort study involving 10,997 atherosclerosis patients, higher PM 2.5 exposure is associated with increased albuminuria.[214]

Fertility

[edit]

Nitrogen dioxide (NO2)

[edit]

An increase in NO2 is significantly associated with a lower live birth rate in women undergoing IVF treatment.[215] In the general population, there is a significant increase in miscarriage rate in women exposed to NO2 compared to those not exposed.[215]

Carbon monoxide (CO)

[edit]

CO exposure is significantly associated with stillbirth in the second and third trimester.[215]

Standard line-angle structure of benzo-a-pyrene (BaP)

Polycyclic aromatic hydrocarbons

[edit]

Polycyclic aromatic hydrocarbons (PAHs) have been associated with reduced fertility. Benzo(a)pyrene (BaP) is a well-known PAH and carcinogen which is often found in exhaust fumes and cigarette smoke.[216] PAHs have been reported to administer their toxic effects through oxidative stress by increasing the production of Reactive Oxygen Species (ROS) which can result in inflammation and cell death. More long-term exposure to PAHs can result in DNA damage and reduced repair.[217]

Exposure to BaP has been reported to reduce sperm motility and increasing the exposure worsens this effect. Research has demonstrated that more BaPs were found in men with reported fertility issues compared to men without.[218]

Studies have shown that BaPs can affect folliculogenesis and ovarian development by reducing the number of ovarian germ cells via triggering cell death pathways and inducing inflammation which can lead to ovarian damage.[219]

Particulate matter

[edit]

Particulate matter (PM) refers to the collection of solids and liquids suspended in the air. These can be harmful to humans, and more research has shown that these effects may be more extensive than first thought; particularly on male fertility. PM can be different sizes, such as PM2.5 which are tiny particles of 2.5 microns in width or smaller, compared with PM10 which are classified as 10 microns in diameter or less.

A study in California found that increased exposure to PM2.5 led to decreased sperm motility and increased abnormal morphology. Similarly, in Poland exposure to PM2.5 and PM10 led to an increase in the percentage of cells with immature chromatin (DNA that has not fully developed or has developed abnormally).[220]

In Turkey, a study examined the fertility of men who work as toll collectors and are therefore exposed to high levels of traffic pollutants daily. Traffic pollution often has high levels of PM10 alongside carbon monoxide and nitrogen oxides.[220] There were significant differences in sperm count and motility in this study group compared to a control group with limited air pollution exposure.

In women, while overall effects on fertility do not appear significant there is an association between increased exposure to PM10 and early miscarriage. Exposure to smaller particulate matter, PM2.5, appears to have an effect on conception rates in women undergoing IVF but does not affect live birth rates.[215]

Ozone structure showing three oxygen atoms

Ground-level ozone pollution

[edit]

Ground-level ozone (O3), when in high concentrations, is regarded as an air pollutant and is often found in smog in industrial areas.

There is limited research about the effect that ozone pollution has on fertility.[215] At present, there is no evidence to suggest that ozone exposure poses a deleterious effect on spontaneous fertility in either females or males. However, there have been studies which suggest that high levels of ozone pollution, often a problem in the summer months, exert an effect on in vitro fertilisation (IVF) outcomes. Within an IVF population, NOx and ozone pollutants were linked with reduced rates of live birth.[215]

While most research on this topic is focused on the direct human exposure of air pollution, other studies have analysed the impact of air pollution on gametes and embryos within IVF laboratories. Multiple studies have reported a marked improvement in embryo quality, implantation and pregnancy rates after IVF laboratories have implemented air filters in a concerted effort to reduce levels of air pollution.[221] Therefore, ozone pollution is considered to have a negative impact on the success of assisted reproductive technologies (ART) when occurring at high levels.

Ozone is thought to act in a biphasic manner where a positive effect on live birth is observed when ozone exposure is limited to before IVF embryo implantation. Conversely, a negative effect is demonstrated upon exposure to ozone after embryo implantation. However, after adjusting for NO2, the association between O3 and IVF live birth rate was no longer significant.[222][223]

In terms of male fertility, ozone is reported to cause a significant decrease in the concentration and count of sperm in semen after exposure.[224] Similarly, sperm vitality, the proportion of live spermatozoa in a sample, was demonstrated to be diminished as a result of exposure to air pollution.[223] However, findings on the effect of ozone exposure on male fertility are somewhat discordant, highlighting the need for further research.[223]

Children

[edit]

Children and infants are among the most vulnerable to air pollution. Polluted air leads to the poisoning of millions of children under the age of 15, resulting in the death of some 600,000 children annually (543,000 under 5 years of age and 52,000 aged 5-15 years).[225] Children in low or middle income countries are exposed to higher levels of fine particulate matter than those in high income countries.[225]

Health effects of air pollution on children include asthma, pneumonia and lower respiratory tract infections and low birth weight.[226] A study in Europe found that exposure to ultrafine particles can increase blood pressure in children.[227]

Prenatal exposure

[edit]

Prenatal exposure to polluted air has been linked to a variety of neurodevelopmental disorders in children. For example, exposure to polycyclic aromatic hydrocarbons (PAH) was associated with reduced IQ scores and symptoms of anxiety and depression.[228] They can also lead to detrimental perinatal health outcomes that are often fatal in developing countries.[8] A 2014 study found that PAHs might play a role in the development of childhood attention deficit hyperactivity disorder (ADHD).[229]

Researchers have found a correlation between air pollution and risk of autism spectrum disorder (ASD) diagnosis, although definitive causality has not yet been established. In Los Angeles, children living in areas with high levels of traffic-related air pollution were more likely to be diagnosed with autism between three–five years of age.[230] A cohort study in Southern California linked in-utero exposure to near-roadway air pollution to an increased risk of ASD diagnosis[231] and a study in Sweden concluded that exposure to PM2.5 during pregnancy was associated with ASD.[232] A Danish study linked exposure to air pollution during infancy, but not during pregnancy, to an increased risk of ASD diagnosis.[233]

The connection between air pollution and neurodevelopmental disorders in children is thought to be related to epigenetic dysregulation of the primordial germ cells, embryo, and fetus during a critical period. Some PAHs are considered endocrine disruptors and are lipid soluble. When they build up in adipose tissue they can be transferred across the placenta can exert a genotoxic effect, cauding DNA damange and mutations.[234] Air pollution has been associated with the prevalence of preterm births.[235]

Infants

[edit]

Ambient levels of air pollution have been associated with preterm birth and low birth weight. A 2014 WHO worldwide survey on maternal and perinatal health found a statistically significant association between low birth weights (LBW) and increased levels of exposure to PM2.5. Women in regions with greater than average PM2.5 levels had statistically significant higher odds of pregnancy resulting in a low-birth weight infant even when adjusted for country-related variables.[236] The effect is thought to be from stimulating inflammation and increasing oxidative stress.

A study found that in 2010 exposure to PM2.5 was strongly associated with 18% of preterm births globally, which was approximately 2.7 million premature births. The countries with the highest air pollution associated preterm births were in South and East Asia, the Middle East, North Africa, and West sub-Saharan Africa.[237] In 2019, ambient particulate matter pollution in Africa resulted in at least 383,000 early deaths, according to new estimates of the cost of air pollution in the continent. This increased from 3.6% in 1990 to around 7.4% of all premature deaths in the area.[238][239][240]

The source of PM2.5 differs greatly by region. In South and East Asia, pregnant women are frequently exposed to indoor air pollution because of wood and other biomass fuels being used for cooking, which are responsible for more than 80% of regional pollution. In the Middle East, North Africa and West sub-Saharan Africa, fine PM comes from natural sources, such as dust storms.[237] The United States had an estimated 50,000 preterm births associated with exposure to PM2.5 in 2010.[237]

A study between 1988 and 1991 found a correlation between sulfur dioxide (SO2) and total suspended particulates (TSP) and preterm births and low birth weights in Beijing. A group of 74,671 pregnant women, in four separate regions of Beijing, were monitored from early pregnancy to delivery along with daily air pollution levels of SO2 and TSP (along with other particulates). The estimated reduction in birth weight was 7.3 g for every 100 μg/m3 increase in SO2 and 6.9 g for each 100 μg/m3 increase in TSP. These associations were statistically significant in both summer and winter, although summer was greater. The proportion of low birth weight attributable to air pollution, was 13%. This is the largest attributable risk ever reported for the known risk factors of low birth weight.[241] Coal stoves, which are in 97% of homes, are a major source of air pollution in this area.

Brauer et al. studied the relationship between air pollution and proximity to a highway with pregnancy outcomes in a Vancouver cohort of pregnant women using addresses to estimate exposure during pregnancy. Exposure to NO, NO2, CO, PM10 and PM2.5 were associated with infants born small for gestational age (SGA). Women living less than 50 meters away from an expressway or highway were 26% more likely to give birth to a SGA infant.[242]

Central nervous system

[edit]

Data is accumulating that air pollution exposure also affects the central nervous system.[243]

Air pollution increases the risk of dementia in people over 50 years old.[244] Indoor air pollution exposure during childhood may negatively affect cognitive function and neurodevelopment.[245][246] Prenatal exposure may also affect neurodevelopment.[247][248] Studies show that air pollution is associated with a variety of developmental disabilities, oxidative stress, and neuro-inflammation and that it may contribute to Alzheimer's disease and Parkinson's disease.[246]

Researchers found that early exposure to air pollution causes the same changes in the brain as autism and schizophrenia in mice. It also showed that air pollution also affected short-term memory, learning ability, and impulsivity. In this study, air pollution had a larger negative impact on male mice than on females.[249][250] Lead researcher on the study, Deborah Cory-Slechta, said that:[251]

When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn't fully developed. It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space. Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders.

Exposure to fine particulate matter can increase levels of cytokines - neurotransmitters produced in response to infection and inflammation that are also associated with depression and suicide. Pollution has been associated with inflammation of the brain, which may disrupt mood regulation. Heightened PM2.5 levels are linked to more self-reported depressive symptoms, and increases in daily suicide rates.[252][253]

In 2015, experimental studies reported the detection of significant episodic (situational) cognitive impairment from impurities in indoor air breathed by test subjects who were not informed about changes in the air quality. Significant deficits were observed in the performance scores achieved in increasing concentrations of either volatile organic compounds (VOCs) or carbon dioxide, while keeping other factors constant. The highest impurity levels reached are not uncommon in some classroom or office environments.[254][255] Higher PM2.5 and CO2 concentrations were shown to be associated with slower response times and reduced accuracy in tests.[256]

PM2.5 Levels Across the World's 5 Most Populated Nations in 2019

"Clean" areas

[edit]
Share of the population exposed to air pollution levels above WHO guidelines, 2017

Even in areas with relatively low levels of air pollution, public health effects can be significant and costly, since a large number of people breathe in such pollutants. A study found that even in areas of the U.S. where ozone and PM2.5 meet federal standards, Medicare recipients who are exposed to more air pollution have higher mortality rates.[257]

Rural populations in India, like those in urban areas, are also exposed to high levels of air pollution.[258] In 2020, scientists found that the boundary layer air over the Southern Ocean around Antarctica is 'unpolluted' by humans.[259]

Agricultural effects

[edit]

Various studies have estimated the impacts of air pollution on agriculture, especially ozone. A 2020 study showed that ozone pollution in California may reduce yields of certain perennial crops such as table grapes by as much as 22% per year, translating into economic damages of more than $1 billion per year.[260] After air pollutants enter the agricultural environment, they not only directly affect agricultural production and quality, but also enter agricultural waters and soil.[261] The COVID-19 induced lockdown served as a natural experiment to expose the close links between air quality and surface greenness. In India, the lockdown induced improvement in air quality, enhanced surface greenness and photosynthetic activity, with the positive response of vegetation to reduce air pollution was dominant in croplands.[262] On the other hand, agriculture in its traditional form is one of the primary contributors to the emission of trace gases like atmospheric ammonia.[263]

Economic effects

[edit]

Air pollution costs the world economy $5 trillion per year as a result of productivity losses and degraded quality of life.[24][25][26] These productivity losses are caused by deaths due to diseases caused by air pollution. One out of ten deaths in 2013 was caused by diseases associated with air pollution and the problem is getting worse.

A small improvement in air quality (1% reduction of ambient PM2.5 and ozone concentrations) would produce $29 million in annual savings in the lower Fraser Valley region in 2010.[264] This finding is based on health valuation of lethal (death) and sub-lethal (illness) affects.

The problem is even more acute in the developing world. "Children under age 5 in lower-income countries are more than 60 times as likely to die from exposure to air pollution as children in high-income countries."[24][25] The report states that additional economic losses caused by air pollution, including health costs[265] and the adverse effect on agricultural and other productivity were not calculated in the report, and thus the actual costs to the world economy are far higher than $5 trillion.

A study published in 2022 found "a strong and significant connection between air pollution and construction site accidents" and that "a 10-ppb increase in NO2 levels increases the likelihood of an accident by as much as 25%".[266]

Other effects

[edit]

Artificial air pollution may be detectable on Earth from distant vantage points such as other planetary systems via atmospheric SETI – including NO2 pollution levels and with telescopic technology close to today. It may also be possible to detect extraterrestrial civilizations this way.[267][268][269]

Historical disasters

[edit]

The world's worst short-term civilian pollution crisis was the 1984 Bhopal Disaster in India.[270] Leaked industrial vapours from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A. (later bought by Dow Chemical Company), killed at least 3787 people and injured from 150,000 to 600,000. The United Kingdom suffered its worst air pollution event when the 4 December Great Smog of 1952 formed over London. In six days more than 4,000 died and more recent estimates put the figure at nearer 12,000.[271]

An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Yekaterinburg (formerly Sverdlovsk) is believed to have caused at least 64 deaths.[272] The worst single incident of air pollution to occur in the US occurred in Donora, Pennsylvania, in late October 1948, when 20 people died and over 7,000 were injured.[273]

Reduction and regulation

[edit]

Global depletion of the surrounding air pollution will require valiant leadership, a surplus of combined resources from the international community, and extensive societal changes.[274] Pollution prevention seeks to prevent pollution such as air pollution and could include adjustments to industrial and business activities such as designing sustainable manufacturing processes (and the products' designs)[275] and related legal regulations as well as efforts towards renewable energy transitions.[276][277]

Efforts to reduce particulate matter in the air may result in better health.[278]

The 9-Euro-Ticket scheme in Germany which allowed people to buy a monthly pass allowing use on all local and regional transport (trains, trams and busses) for 9 euro (€) for one month of unlimited travel saved 1.8 million tons of CO2 emissions during its three-month implementation from June to August 2022.[279]

Pollution control

[edit]
Burning of items polluting Jamestown environment in Accra, Ghana

Various pollution control technologies and strategies are available to reduce air pollution.[280][281] At its most basic level, land-use planning is likely to involve zoning and transport infrastructure planning. In most developed countries, land-use planning is an important part of social policy, ensuring that land is used efficiently for the benefit of the wider economy and population, as well as to protect the environment.[282] Stringent environmental regulations, effective control technologies and shift towards the renewable source of energy also helping countries like China and India to reduce their sulfur dioxide pollution.[283]

Titanium dioxide has been researched for its ability to reduce air pollution. Ultraviolet light will release free electrons from material, thereby creating free radicals, which break up VOCs and

NOx gases. One form is superhydrophilic.[284]

Pollution-eating nanoparticles placed near a busy road were shown to absorb toxic emission from around 20 cars each day.[285]

Energy transition

[edit]

Since a large share of air pollution is caused by combustion of fossil fuels such as coal and oil, the reduction of these fuels can reduce air pollution drastically. Most effective is the switch to clean power sources such as wind power, solar power, hydro power which do not cause air pollution.[286] Efforts to reduce pollution from mobile sources includes expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as string trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use of hybrid vehicles), conversion to cleaner fuels, and conversion to electric vehicles. For example, buses in New Delhi, India, have run on compressed natural gas since 2000, to help eliminate the city's "pea-soup" smog.[226][287]

A very effective means to reduce air pollution is the transition to renewable energy. According to a study published in Energy and Environmental Science in 2015 the switch to 100% renewable energy in the United States would eliminate about 62,000 premature mortalities per year and about 42,000 in 2050, if no biomass were used. This would save about $600 billion in health costs a year due to reduced air pollution in 2050, or about 3.6% of the 2014 U.S. gross domestic product.[286] Air quality improvement is a near-term benefit among the many societal benefits from climate change mitigation.

Alternatives to pollution

[edit]
Support for a ban on high-emission vehicles in city centres in Europe, China and the US from respondents to the European Investment Bank Climate Survey
Support, use and infrastructure-expansion of forms of public transport that do not cause air pollution may be a critical key alternative to pollution.

There are now practical alternatives to the principal causes of air pollution:

  • Strategic substitution of air pollution sources in transport with lower-emission or, during the lifecycle, emission-free forms of public transport[288][289] and bicycle use and infrastructure (as well as with remote work, reductions of work, relocations, and localizations)
    • Phase-out of fossil fuel vehicles is a critical component of a shift to sustainable transport; however, similar infrastructure and design decisions like electric vehicles may be associated with similar pollution for production as well as mining and resource exploitation for large numbers of needed batteries as well as the energy for their recharging[290][291]
  • Areas downwind (over 20 miles) of major airports have more than double total particulate emissions in air than other areas, even when factoring in areas with frequent ship calls, and heavy freeway and city traffic like Los Angeles.[292] Aviation biofuel mixed in with jetfuel at a 50/50 ratio can reduce jet derived cruise altitude particulate emissions by 50–70%, according to a NASA led 2017 study (however, this should imply ground level benefits to urban air pollution as well).[293]
  • Ship propulsion and idling can be switched to much cleaner fuels like natural gas. (Ideally a renewable source but not practical yet)
  • Combustion of fossil fuels for space heating can be replaced by using ground source heat pumps and seasonal thermal energy storage.[294]
  • Electricity generated from the combustion of fossil fuels can be replaced by nuclear and renewable energy. Heating and home stoves, which contribute significantly to regional air pollution, can be replaced with a much cleaner fossil fuel, such as natural gas, or, preferably, renewables, in poor countries.[295][296]
  • Motor vehicles driven by fossil fuels, a key factor in urban air pollution, can be replaced by electric vehicles. Though lithium supply and cost is a limitation, there are alternatives. Herding more people into clean public transit such as electric trains can also help. Nevertheless, even in emission-free electric vehicles, rubber tires produce significant amounts of air pollution themselves, ranking as 13th worst pollutant in Los Angeles.[297]
  • Reducing travel in vehicles can curb pollution. After Stockholm reduced vehicle traffic in the central city with a congestion tax, nitrogen dioxide and PM10 pollution declined, as did acute pediatric asthma attacks.[298]
  • Biodigesters can be utilized in poor nations where slash and burn is prevalent, turning a useless commodity into a source of income. The plants can be gathered and sold to a central authority that will break them down in a large modern biodigester, producing much needed energy to use.[299]
  • Induced humidity and ventilation both can greatly dampen air pollution in enclosed spaces, which was found to be relatively high inside subway lines due to braking and friction and relatively less ironically inside transit buses than lower sitting passenger automobiles or subways.[300]

Control devices

[edit]
Tarps and netting are often used to reduce the amount of dust released from construction sites.
Air pollution from a car

The following items are commonly used as pollution control devices in industry and transportation. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.

  • Particulate control
    • Mechanical collectors (dust cyclones, multicyclones)
    • Electrostatic precipitators: An electrostatic precipitator (ESP), or electrostatic air cleaner, is a particulate collection device that removes particles from a flowing gas (such as air), using the force of an induced electrostatic charge. Electrostatic precipitators are highly efficient filtration devices that minimally impede the flow of gases through the device, and can easily remove fine particulates such as dust and smoke from the air stream.
    • Baghouses: Designed to handle heavy dust loads, a dust collector consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system (distinguished from air cleaners which utilize disposable filters to remove the dust).
    • Particulate scrubbers: A wet scrubber is a form of pollution control technology. The term describes a variety of devices that use pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some other contact method, so as to remove the pollutants.
  • Scrubbers
    • Baffle spray scrubber
    • Cyclonic spray scrubber
    • Ejector venturi scrubber
    • Mechanically aided scrubber
    • Spray tower
    • Wet scrubber
  • NOx control
    • LO-NOx burners
    • Selective catalytic reduction (SCR)
    • Selective non-catalytic reduction (SNCR)
    • NOx scrubbers
    • Exhaust gas recirculation
    • Catalytic converter (also for VOC control)
  • VOC abatement
    • Adsorption systems, using activated carbon, such as Fluidized Bed Concentrator
    • Flares
    • Thermal oxidizers
    • Catalytic converters
    • Biofilters
    • Absorption (scrubbing)
    • Cryogenic condensers
    • Vapor recovery systems
  • Acid gas/SO2 control
    • Wet scrubbers
    • Dry scrubbers
    • Flue-gas desulfurization
  • Mercury control
    • Sorbent injection technology
    • Electro-catalytic oxidation (ECO)
    • K-Fuel
  • Dioxin and furan control
  • Miscellaneous associated equipment
    • Source capturing systems
    • Continuous emissions monitoring systems (CEMS)

Monitoring

[edit]

Spatiotemporal monitoring of air quality may be necessary for improving air quality, and thereby the health and safety of the public, and assessing impacts of interventions.[301] Such monitoring is done to different extents with different regulatory requirements with discrepant regional coverage by a variety of organizations and governance entities such as using a variety of technologies for use of the data and sensing such mobile IoT sensors,[302][303] satellites,[304][305][306] and monitoring stations.[307][308] Some websites attempt to map air pollution levels using available data.[309][310][311]

Air quality modeling

[edit]

Numerical models either on a global scale using tools such as GCMs (general circulation models coupled with a pollution module) or CTMs (Chemical transport model) can be used to simulate the levels of different pollutants in the atmosphere. These tools can have several types (Atmospheric model) and different uses. These models can be used in forecast mode which can help policy makers to decide on appropriate actions when an air pollution episode is detected. They can also be used for climate modeling including evolution of air quality in the future, for example the IPCC (Intergovernmental Panel on Climate Change) provides climate simulations including air quality assessments in their reports (latest report accessible through their site).

Regulations

[edit]
Smog in Cairo

In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards and E.U. Air Quality Directive[312]) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American air quality index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.

Canada

[edit]

In Canada, air pollution and associated health risks are measured with the Air Quality Health Index (AQHI).[313] It is a health protection tool used to make decisions to reduce short-term exposure to air pollution by adjusting activity levels during increased levels of air pollution.

The AQHI is a federal program jointly coordinated by Health Canada and Environment Canada. However, the AQHI program would not be possible without the commitment and support of the provinces, municipalities and NGOs. From air quality monitoring to health risk communication and community engagement, local partners are responsible for the vast majority of work related to AQHI implementation. The AQHI provides a number from 1 to 10+ to indicate the level of health risk associated with local air quality. Occasionally, when the amount of air pollution is abnormally high, the number may exceed 10. The AQHI provides a local air quality current value as well as a local air quality maximums forecast for today, tonight and tomorrow and provides associated health advice.

1 2 3 4 5 6 7 8 9 10 +
Risk: Low (1–3) Moderate (4–6) High (7–10) Very high (above 10)

As it is now known that even low levels of air pollution can trigger discomfort for the sensitive population, the index has been developed as a continuum: The higher the number, the greater the health risk and need to take precautions. The index describes the level of health risk associated with this number as 'low', 'moderate', 'high' or 'very high', and suggests steps that can be taken to reduce exposure.[314]

Health risk Air Quality Health Index Health messages[315]
At risk population General population
Low 1–3 Enjoy your usual outdoor activities. Ideal air quality for outdoor activities
Moderate 4–6 Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms. No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation.
High 7–10 Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy. Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation.
Very high Above 10 Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion and should stay indoors. Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation.

The measurement is based on the observed relationship of nitrogen dioxide (NO2), ground-level ozone (O3) and particulates (PM2.5) with mortality, from an analysis of several Canadian cities. Significantly, all three of these pollutants can pose health risks, even at low levels of exposure, especially among those with pre-existing health problems.

When developing the AQHI, Health Canada's original analysis of health effects included five major air pollutants: particulates, ozone, and nitrogen dioxide (NO2), as well as sulfur dioxide (SO2), and carbon monoxide (CO). The latter two pollutants provided little information in predicting health effects and were removed from the AQHI formulation.

The AQHI does not measure the effects of odour, pollen, dust, heat or humidity.

Germany

[edit]

TA Luft is the German air quality regulation.[316]

Governing urban air pollution

[edit]

In Europe, Council Directive 96/62/EC on ambient air quality assessment and management provides a common strategy against which member states can "set objectives for ambient air quality in order to avoid, prevent or reduce harmful effects on human health and the environment ... and improve air quality where it is unsatisfactory".[317]

In July 2008, in the case Dieter Janecek v. Freistaat Bayern, the European Court of Justice ruled that under this directive[317] citizens have the right to require national authorities to implement a short term action plan that aims to maintain or achieve compliance to air quality limit values.[318][319]

This important case law appears to confirm the role of the EC as centralised regulator to European nation-states as regards air pollution control. It places a supranational legal obligation on the UK to protect its citizens from dangerous levels of air pollution, furthermore superseding national interests with those of the citizen.

In 2010, the European Commission (EC) threatened the UK with legal action against the successive breaching of PM10 limit values.[320] The UK government has identified that if fines are imposed, they could cost the nation upwards of £300 million per year.[321]

In March 2011, the Greater London Built-up Area remained the only UK region in breach of the EC's limit values, and was given three months to implement an emergency action plan aimed at meeting the EU Air Quality Directive.[322] The City of London has dangerous levels of PM10 concentrations, estimated to cause 3000 deaths per year within the city.[323] As well as the threat of EU fines, in 2010 it was threatened with legal action for scrapping the western congestion charge zone, which is claimed to have led to an increase in air pollution levels.[324]

In response to these charges, mayor of London Boris Johnson has criticised the current need for European cities to communicate with Europe through their nation state's central government, arguing that in future "A great city like London" should be permitted to bypass its government and deal directly with the European Commission regarding its air quality action plan.[322]

This can be interpreted as recognition that cities can transcend the traditional national government organisational hierarchy and develop solutions to air pollution using global governance networks, for example through transnational relations. Transnational relations include but are not exclusive to national governments and intergovernmental organisations,[325] allowing sub-national actors including cities and regions to partake in air pollution control as independent actors.

Global city partnerships can be built into networks, for example the C40 Cities Climate Leadership Group, of which London is a member. The C40 is a public 'non-state' network of the world's leading cities that aims to curb their greenhouse emissions.[326] The C40 has been identified as 'governance from the middle' and is an alternative to intergovernmental policy.[327] It has the potential to improve urban air quality as participating cities "exchange information, learn from best practices and consequently mitigate carbon dioxide emissions independently from national government decisions".[326] A criticism of the C40 network is that its exclusive nature limits influence to participating cities and risks drawing resources away from less powerful city and regional actors.

Indigenous people

[edit]

Because Indigenous people[328] frequently experience a disproportionate share of the effects of environmental degradation and climate change, even while they have made very little contribution to the processes causing these changes, environmental justice is especially important to them. Indigenous peoples have been marginalized and their lands and resources have been exploited as a result of historical and continuing colonization, institutional injustices, and inequality.

Indigenous groups frequently lack the political and financial clout to influence policy decisions that impact their lands and means of subsistence or to lessen the effects of climate change. This makes the already-existing inequalities in these communities' social, economic, and health conditions worse. Furthermore, traditional ecological knowledge and Indigenous knowledge systems provide insightful information about sustainable resource management and climate change adaptation techniques. To promote persistence and environmental justice, Indigenous viewpoints must be acknowledged and integrated into efforts to mitigate the effects of climate change and adapt to them.

Combating climate change necessitates an all-encompassing strategy that recognizes the interdependence of social, economic, and environmental elements. This entails defending treaty rights, advancing Indigenous sovereignty and self-determination, and aiding Indigenous-led projects for sustainable development and environmental preservation.

Hotspots

[edit]

Air pollution hotspots are areas where air pollution emissions expose individuals to increased negative health effects.[329] They are particularly common in highly populated, urban areas, where there may be a combination of stationary sources (e.g. industrial facilities) and mobile sources (e.g. cars and trucks) of pollution. Emissions from these sources can cause respiratory disease, childhood asthma,[141] cancer, and other health problems. Fine particulate matter such as diesel soot, which contributes to more than 3.2 million premature deaths around the world each year, is a significant problem. It is very small and can lodge itself within the lungs and enter the bloodstream. Diesel soot is concentrated in densely populated areas, and one in six people in the U.S. live near a diesel pollution hot spot.[330]

External videos
video icon AirVisual Earth – realtime map of global wind and air pollution[331]

While air pollution hotspots affect a variety of populations, some groups are more likely to be located in hotspots. Previous studies have shown disparities in exposure to pollution by race and/or income. Hazardous land uses (toxic storage and disposal facilities, manufacturing facilities, major roadways) tend to be located where property values and income levels are low. Low socioeconomic status can be a proxy for other kinds of social vulnerability, including race, a lack of ability to influence regulation and a lack of ability to move to neighborhoods with less environmental pollution. These communities bear a disproportionate burden of environmental pollution and are more likely to face health risks such as cancer or asthma.[332]

Studies show that patterns in race and income disparities not only indicate a higher exposure to pollution but also higher risk of adverse health outcomes.[333] Communities characterized by low socioeconomic status and racial minorities can be more vulnerable to cumulative adverse health impacts resulting from elevated exposure to pollutants than more privileged communities.[333] Blacks and Latinos generally face more pollution than Whites and Asians, and low-income communities bear a higher burden of risk than affluent ones.[332] Racial discrepancies are particularly distinct in suburban areas of the Southern United States and metropolitan areas of the Midwestern and Western United States.[334] Residents in public housing, who are generally low-income and cannot move to healthier neighborhoods, are highly affected by nearby refineries and chemical plants.[335]

Cities

[edit]
Nitrogen dioxide concentrations as measured from satellite 2002–2004

Air pollution is usually concentrated in densely populated metropolitan areas, especially in developing countries where cities are experiencing rapid growth and environmental regulations are relatively lax or nonexistent. Urbanization leads to a rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities.[336] However, even populated areas in developed countries attain unhealthy levels of pollution, with Los Angeles and Rome being two examples.[337] Between 2002 and 2011 the incidence of lung cancer in Beijing near doubled. While smoking remains the leading cause of lung cancer in China, the number of smokers is falling while lung cancer rates are rising .[338]

[339]
World's Most Polluted Cities 2020 2020 Average 2019 Average
Hotan, China 110.2 110.1
Ghaziabad, India 106.6 110.2
Bulandshahr, India 98.4 89.4
Bisrakh Jalalpur, India 96.0 -
Bhiwadi, India 95.5 83.4

Tehran was declared the most polluted city in the world on May 24, 2022.[340]

Projections

[edit]

In a 2019 projection, by 2030 half of the world's pollution emissions could be generated by Africa.[341] Potential contributors to such an outcome include increased burning activities (such as the burning of open waste), traffic, agri-food and chemical industries, sand dust from the Sahara, and overall population growth.

In a 2012 study, by 2050 outdoor air pollution (particulate matter and ground-level ozone) is projected to become the top cause of environmentally related deaths worldwide.[342]

See also

[edit]

Source

  • Beehive burner
  • Bottom ash
  • Concrete#Concrete – health and safety
  • Diwali-related air pollution
  • Flue-gas emissions from fossil-fuel combustion
  • Health impacts of sawdust
  • Joss paper
  • Metal working
  • Mining
  • Non-exhaust emissions
  • Power tool
  • Rubber pollution
  • Slag
  • Smelting
  • Tire fire
  • Welding
  • Wood ash

Measurement

  • Air pollutant concentrations
  • Air pollution measurement
  • Organic molecular tracers
  • Intake fraction
  • Particulate matter sampler

Others

  • Air stagnation
  • ASEAN Agreement on Transboundary Haze Pollution
  • Asian brown cloud
  • Atmospheric chemistry
  • BenMAP
  • Best Available Control Technology
  • Critical load
  • Emission standard
  • Emissions & Generation Resource Integrated Database
  • Environmental agreement
  • Environmental racism
  • Exposome
  • Global Atmosphere Watch
  • Global dimming
  • Great Smog of London
  • Haze
  • Health Effects Institute (HEI)
  • Indicator value
  • International Agency for Research on Cancer
  • International Day of Clean Air for Blue Skies
  • Kyoto Protocol
  • Light water reactor sustainability
  • List of smogs by death toll
  • Lowest Achievable Emissions Rate
  • NASA Clean Air Study
  • NIEHS
  • Phytoremediation
  • Polluter pays principle
  • Regulation of greenhouse gases under the Clean Air Act
  • Silicosis#Prevention

References

[edit]
  1. ^ a b c "Air pollution". www.who.int. Retrieved 14 January 2023.
  2. ^ a b Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020). "Environmental and Health Impacts of Air Pollution: A Review". Frontiers in Public Health. 8: 14. doi:10.3389/fpubh.2020.00014. ISSN 2296-2565. PMC 7044178. PMID 32154200.
  3. ^ Howell R, Pickerill J (2016). "The Environment and Environmentalism". In Daniels P, Bradshaw M, Shaw D, Sidaway J, Hall T (eds.). An Introduction To Human Geography (5th ed.). Pearson. p. 134. ISBN 978-1-292-12939-6.
  4. ^ Dimitriou A, Christidou V (26 September 2011), Khallaf M (ed.), "Causes and Consequences of Air Pollution and Environmental Injustice as Critical Issues for Science and Environmental Education", The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources, InTech, doi:10.5772/17654, ISBN 978-953-307-528-0, retrieved 31 May 2022
  5. ^ a b c d e f "7 million premature deaths annually linked to air pollution". WHO. 25 March 2014. Retrieved 25 March 2014.
  6. ^ Allen JL, Klocke C, Morris-Schaffer K, Conrad K, Sobolewski M, Cory-Slechta DA (June 2017). "Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings". Current Environmental Health Reports. 4 (2): 180–191. Bibcode:2017CEHR....4..180A. doi:10.1007/s40572-017-0134-3. ISSN 2196-5412. PMC 5499513. PMID 28435996.
  7. ^ Newbury JB, Stewart R, Fisher HL, Beevers S, Dajnak D, Broadbent M, et al. (2021). "Association between air pollution exposure and mental health service use among individuals with first presentations of psychotic and mood disorders: retrospective cohort study". The British Journal of Psychiatry. 219 (6) (published 19 August 2021): 678–685. doi:10.1192/bjp.2021.119. ISSN 0007-1250. PMC 8636613. PMID 35048872.
  8. ^ a b Ghosh R, Causey K, Burkart K, Wozniak S, Cohen A, Brauer M (28 September 2021). "Ambient and household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories". PLOS Medicine. 18 (9): e1003718. doi:10.1371/journal.pmed.1003718. ISSN 1549-1676. PMC 8478226. PMID 34582444.
  9. ^ Dominski FH, Lorenzetti Branco JH, Buonanno G, Stabile L, Gameiro da Silva M, Andrade A (October 2021). "Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses". Environmental Research. 201: 111487. Bibcode:2021ER....20111487D. doi:10.1016/j.envres.2021.111487. ISSN 0013-9351. PMID 34116013.
  10. ^ Lee KK, Bing R, Kiang J, Bashir S, Spath N, Stelzle D, et al. (November 2020). "Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study". The Lancet Global Health. 8 (11): e1427–e1434. doi:10.1016/S2214-109X(20)30343-0. ISSN 2214-109X. PMC 7564377. PMID 33069303.
  11. ^ Stanek LW, Brown JS, Stanek J, Gift J, Costa DL (2011). "Air Pollution Toxicology—A Brief Review of the Role of the Science in Shaping the Current Understanding of Air Pollution Health Risks". Toxicological Sciences. 120: S8–S27. doi:10.1093/toxsci/kfq367. PMID 21147959. Retrieved 7 November 2022.
  12. ^ Majumder N, Kodali V, Velayutham M, Goldsmith T, Amedro J, Khramtsov VV, et al. (2022). "Aerosol physicochemical determinants of carbon black and ozone inhalation co-exposure induced pulmonary toxicity". Toxicological Sciences. 191 (1): 61–78. doi:10.1093/toxsci/kfac113. PMC 9887725. PMID 36303316.
  13. ^ Daniel A. Vallero (2014). Fundamentals of Air Pollution. Academic Press. pp. 43, 122, 215. ISBN 978-0-12-404602-3.
  14. ^ a b c d Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, et al. (June 2022). "Pollution and health: a progress update". The Lancet Planetary Health. 6 (6): e535–e547. doi:10.1016/S2542-5196(22)00090-0. PMID 35594895. S2CID 248905224.
  15. ^ Juginović A, Vuković M, Aranza I, Biloš V (18 November 2021). "Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries". Scientific Reports. 11 (1): 22516. Bibcode:2021NatSR..1122516J. doi:10.1038/s41598-021-01802-5. eISSN 2045-2322. PMC 8602675. PMID 34795349.
  16. ^ a b Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T (1 September 2020). "Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective". Cardiovascular Research. 116 (11): 1910–1917. doi:10.1093/cvr/cvaa025. ISSN 0008-6363. PMC 7449554. PMID 32123898.
  17. ^ "Energy and Air Pollution" (PDF). Iea.org. Archived from the original (PDF) on 11 October 2019. Retrieved 12 March 2019.
  18. ^ "Study Links 6.5 Million Deaths Each Year to Air Pollution". The New York Times. 26 June 2016. Retrieved 27 June 2016.
  19. ^ Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V (25 March 2019). "Effects of fossil fuel and total anthropogenic emission removal on public health and climate". Proceedings of the National Academy of Sciences of the United States of America. 116 (15): 7192–7197. Bibcode:2019PNAS..116.7192L. doi:10.1073/pnas.1819989116. PMC 6462052. PMID 30910976. S2CID 85515425.
  20. ^ Silva RA, West JJ, Zhang Y, Anenberg SC, Lamarque JF, Shindell DT, et al. (2013). "Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change". Environmental Research Letters. 8 (3): 034005. Bibcode:2013ERL.....8c4005S. doi:10.1088/1748-9326/8/3/034005.
  21. ^ a b "9 out of 10 people worldwide breathe polluted air, but more countries are taking action". World Health Organization. 2 May 2018. Retrieved 18 May 2021.
  22. ^ "Cheap air pollution monitors help plot your walk". European Investment Bank. Retrieved 18 May 2021.
  23. ^ "Assessing the risks to health from air pollution". www.eea.europa.eu. European Environment Agency. Retrieved 18 May 2021.
  24. ^ a b c World Bank, Institute for Health Metrics and Evaluation at University of Washington – Seattle (2016). The Cost of Air Pollution: Strengthening the Economic Case for Action (PDF). Washington, D.C.: The World Bank. xii.
  25. ^ a b c McCauley L (8 September 2016). "Making Case for Clean Air, World Bank Says Pollution Cost Global Economy $5 Trillion". Common Dreams. Retrieved 3 February 2018.
  26. ^ a b "The Rising Cost of Smog". Fortune: 15. 1 February 2018. ISSN 0015-8259.
  27. ^ Batool R, Zaman K, Khurshid MA, Sheikh SM, Aamir A, Shoukry AM, et al. (October 2019). "Economics of death and dying: a critical evaluation of environmental damages and healthcare reforms across the globe". Environmental Science and Pollution Research International. 26 (29): 29799–29809. Bibcode:2019ESPR...2629799B. doi:10.1007/s11356-019-06159-x. ISSN 1614-7499. PMID 31407261. S2CID 199528114.
  28. ^ Bherwani H, Nair M, Musugu K, Gautam S, Gupta A, Kapley A, et al. (10 June 2020). "Valuation of air pollution externalities: comparative assessment of economic damage and emission reduction under COVID-19 lockdown". Air Quality, Atmosphere & Health. 13 (6): 683–694. Bibcode:2020AQAH...13..683B. doi:10.1007/s11869-020-00845-3. ISSN 1873-9318. PMC 7286556. PMID 32837611.
  29. ^ Boubel R, Vallero D, Fox D, Turner B, Stern A (2013). Fundamentals of Air Pollution (Third ed.). Elsevier. pp. 447–522. ISBN 9780080507071. Retrieved 10 April 2024.
  30. ^ Regulating Air Quality: The First Global Assessment of Air Pollution Legislation. Nairobi, Kenya: United Nations Environment Programme. 2021. ISBN 978-92-807-3872-8. Retrieved 10 April 2024.
  31. ^ Brimblecombe P (2006). "The clean air act after 50 years". Weather. 61 (11): 311–314. Bibcode:2006Wthr...61..311B. doi:10.1256/wea.127.06. Retrieved 11 April 2024.
  32. ^ "Progress Cleaning the Air and Improving People's Health". US Environmental Protection Agency. 8 June 2015. Retrieved 11 April 2024.
  33. ^ Environment UN (29 October 2018). "About Montreal Protocol". Ozonaction. Retrieved 7 June 2022.
  34. ^ "The Montreal Protocol on Substances That Deplete the Ozone Layer". United States Department of State. Retrieved 7 June 2022.
  35. ^ "Protocol On Further Reduction Of Sulphur Emissions To The Convention On Long-Range Transboundary Air Pollution | International Environmental Agreements (IEA) Database Project". iea.uoregon.edu. Retrieved 7 June 2022.
  36. ^ Nations U. "ClimateChange". United Nations. Retrieved 7 June 2022.
  37. ^ "Climate change". www.who.int. World Health Organization. Retrieved 7 June 2022.
  38. ^ "Global Climate Agreements: Successes and Failures". Council on Foreign Relations. Retrieved 7 June 2022.
  39. ^ "Basic Information about NO2". US Environmental Protection Agency. 6 July 2016. Retrieved 12 April 2024.
  40. ^ "Radon". World Health Organization. Retrieved 12 April 2024.
  41. ^ Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020). "Environmental and Health Impacts of Air Pollution: A Review". Front Public Health. 8: 14. doi:10.3389/fpubh.2020.00014. PMC 7044178. PMID 32154200.
  42. ^ Perera F (23 December 2017). "Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist". International Journal of Environmental Research and Public Health. 15 (1): 16. doi:10.3390/ijerph15010016. ISSN 1660-4601. PMC 5800116. PMID 29295510.
  43. ^ "Mapping methane emissions on a global scale". ESA. Archived from the original on 3 February 2022.
  44. ^ "Climate change: Satellites map huge methane plumes from oil and gas". BBC News. 4 February 2022. Retrieved 16 March 2022.
  45. ^ "Cracking down on methane 'ultra emitters' is a quick way to combat climate change, researchers find". The Washington Post. Retrieved 16 March 2022.
  46. ^ Lauvaux T, Giron C, Mazzolini M, d'Aspremont A, Duren R, Cusworth D, et al. (4 February 2022). "Global assessment of oil and gas methane ultra-emitters". Science. 375 (6580): 557–561. arXiv:2105.06387. Bibcode:2022Sci...375..557L. doi:10.1126/science.abj4351. ISSN 0036-8075. PMID 35113691. S2CID 246530897.
  47. ^ Rentschler J, Leonova N (2023). "Global air pollution exposure and poverty". Nature Communications. 14 (1): 4432. Bibcode:2023NatCo..14.4432R. doi:10.1038/s41467-023-39797-4. PMC 10363163. PMID 37481598.
  48. ^ Pennise D, Smith K. "Biomass Pollution Basics" (PDF). World Health Organization. Archived from the original (PDF) on 9 July 2012.
  49. ^ "Indoor air pollution and household energy". WHO and UNEP. 2011.
  50. ^ Hawkes N (22 May 2015). "Air pollution in UK: the public health problem that won't go away". BMJ. 350 (may22 1): h2757. doi:10.1136/bmj.h2757. PMID 26001592. S2CID 40717317.
  51. ^ "Wood burning heaters and your health - Fact sheets". www.health.nsw.gov.au.
  52. ^ Tsiodra I, Grivas G, Tavernaraki K, Bougiatioti A, Apostolaki M, Paraskevopoulou D, et al. (7 December 2021). "Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes". Atmospheric Chemistry and Physics. 21 (23): 17865–17883. Bibcode:2021ACP....2117865T. doi:10.5194/acp-21-17865-2021. ISSN 1680-7316. S2CID 245103794.
  53. ^ Nace T. "China Shuts Down Tens Of Thousands Of Factories In Widespread Pollution Crackdown". Forbes. Retrieved 16 June 2022. ... it is estimated that 40 percent of all China's factories have been shut down at some point in order to be inspected... [and] over 80,000 factories have been hit with fines and criminal offenses as a result of their emissions.
  54. ^ Huo H, Zhang Q, Guan D, Su X, Zhao H, He K (16 December 2014). "Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches". Environmental Science & Technology. 48 (24): 14139–14147. Bibcode:2014EnST...4814139H. doi:10.1021/es503959t. ISSN 0013-936X. PMID 25401750.
  55. ^ Huo H, Zhang Q, Guan D, Su X, Zhao H, He K (16 December 2014). "Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches". Environmental Science & Technology. 48 (24): 14139–14147. Bibcode:2014EnST...4814139H. doi:10.1021/es503959t. ISSN 0013-936X. PMID 25401750.
  56. ^ "EMEP/EEA air pollutant emission inventory guidebook 2019".
  57. ^ "Particulate Matter (PM), US EPA". 19 April 2016.
  58. ^ "GovHK: Green Tips for Home Renovation". GovHK. 16 September 2024. Retrieved 22 September 2024.
  59. ^ "Health crisis: Up to a billion tons of waste potentially burned in the open every year". phys.org. Retrieved 13 February 2021.
  60. ^ Cook E, Velis CA (6 January 2021). "Global Review on Safer End of Engineered Life". Global Review on Safer End of Engineered Life. Retrieved 13 February 2021.
  61. ^ "Combustion Pollutants in Your Home - Guidelines". California Air Resources Board. Retrieved 16 June 2022. "... most furnaces, wood stoves, fireplaces, gas water heaters, and gas clothes dryers, usually vent (exhaust) the combustion pollutants directly to the outdoors. However, if the vent system is not properly designed, installed, and maintained, indoor pollutants can build up quickly inside the home.
  62. ^ "Overview of Air Pollution from Transportation". US Environmental Protection Agency. 15 December 2021. Retrieved 16 June 2022.
  63. ^ Ryan RG, Marais EA, Balhatchet CJ, Eastham SD (June 2022). "Impact of Rocket Launch and Space Debris Air Pollutant Emissions on Stratospheric Ozone and Global Climate". Earth's Future. 10 (6): e2021EF002612. Bibcode:2022EaFut..1002612R. doi:10.1029/2021EF002612. ISSN 2328-4277. PMC 9287058. PMID 35865359.
  64. ^ Yeung J. "Microplastics in our air 'spiral the globe' in a cycle of pollution, study finds". CNN. Retrieved 4 August 2022.
  65. ^ Wang J, Wu Q, Liu J, Yang H, Yin M, Chen S, et al. (2019). "Vehicle emission and atmospheric pollution in China: problems, progress, and prospects". PeerJ. 7: e6932. doi:10.7717/peerj.6932. PMC 6526014. PMID 31143547.
  66. ^ Air Quality Expert Group (2004). Nitrogen Dioxide in the United Kingdom (PDF). Department for Environment, Food and Rural Affairs. Retrieved 12 April 2024.
  67. ^ Aggarwal P, Jain S (2015). "Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach". Environ Int. 83: 146–57. Bibcode:2015EnInt..83..146A. doi:10.1016/j.envint.2015.06.010. PMID 26142107.
  68. ^ "NASA GISS: NASA News & Feature Releases:Road Transportation Emerges as Key Driver of Warming". www.giss.nasa.gov. Retrieved 4 August 2022.
  69. ^ "Car Emissions & Global Warming | Union of Concerned Scientists". www.ucsusa.org. Retrieved 4 August 2022.
  70. ^ "NASA's AIRS Maps Carbon Monoxide from Brazil Fires". NASA Jet Propulsion Laboratory (JPL). Retrieved 4 August 2022.
  71. ^ Harper AR, Doerr SH, Santin C, Froyd CA, Sinnadurai P (15 May 2018). "Prescribed fire and its impacts on ecosystem services in the UK". Science of the Total Environment. 624: 691–703. Bibcode:2018ScTEn.624..691H. doi:10.1016/j.scitotenv.2017.12.161. ISSN 0048-9697. PMID 29272838.
  72. ^ George Neary D, McMichael Leonard J (8 April 2020), Missiakô Kindomihou V (ed.), "Effects of Fire on Grassland Soils and Water: A Review", Grasses and Grassland Aspects, IntechOpen, doi:10.5772/intechopen.90747, ISBN 978-1-78984-949-3, S2CID 213578405, retrieved 7 June 2022
  73. ^ Husseini R, Aboah DT, Issifu H (1 March 2020). "Fire control systems in forest reserves: An assessment of three forest districts in the Northern region, Ghana". Scientific African. 7: e00245. Bibcode:2020SciAf...700245H. doi:10.1016/j.sciaf.2019.e00245. ISSN 2468-2276. S2CID 213400214.
  74. ^ Reyes O, Casal M (November 2004). "Effects of forest fire ash on germination and early growth of four pinus species". Plant Ecology. 175 (1): 81–89. Bibcode:2004PlEco.175...81R. doi:10.1023/B:VEGE.0000048089.25497.0c. ISSN 1385-0237. S2CID 20388177.
  75. ^ Chatterjee R (15 February 2018). "Wall Paint, Perfumes and Cleaning Agents Are Polluting Our Air". NPR. Retrieved 12 March 2019.
  76. ^ "Basic Information about Landfill Gas". US Environmental Protection Agency. 15 April 2016. Retrieved 9 August 2022. Landfill gas (LFG) is a natural byproduct of the decomposition of organic material in landfills. LFG is composed of roughly 50 percent methane...
  77. ^ "Open waste burning prevention | Climate & Clean Air Coalition". www.ccacoalition.org. 7 September 2023. Retrieved 22 December 2023.
  78. ^ Hafemeister D (2016), "Biological and Chemical Weapons", Nuclear Proliferation and Terrorism in the Post-9/11 World, Cham: Springer International Publishing, pp. 337–351, doi:10.1007/978-3-319-25367-1_15, ISBN 978-3-319-25365-7, PMC 7123302
  79. ^ Sun F, Dai Y, Yu X (December 2017). "Air pollution, food production and food security: A review from the perspective of food system". Journal of Integrative Agriculture. 16 (12): 2945–2962. Bibcode:2017JIAgr..16.2945S. doi:10.1016/S2095-3119(17)61814-8.
  80. ^ Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (September 2015). "The contribution of outdoor air pollution sources to premature mortality on a global scale". Nature. 525 (7569): 367–371. Bibcode:2015Natur.525..367L. doi:10.1038/nature15371. ISSN 1476-4687. PMID 26381985. S2CID 4460927. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity.
  81. ^ Diep F (31 January 2018). "California's Farms Are an Even Larger Source of Air Pollution Than We Thought". Pacific Standard. Retrieved 2 February 2018.
  82. ^ Nemecek T, Poore J (1 June 2018). "Reducing food's environmental impacts through producers and consumers". Science. 360 (6392): 987–992. Bibcode:2018Sci...360..987P. doi:10.1126/science.aaq0216. ISSN 0036-8075. PMID 29853680. S2CID 206664954.
  83. ^ "Education Data, Visualizations & Graphics on particulate pollution". www.cleanairresources.com. Archived from the original on 20 March 2019. Retrieved 20 March 2019.
  84. ^ Goldstein AH, Koven CD, Heald CL, Fung IY (5 May 2009). "Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States". Proceedings of the National Academy of Sciences. 106 (22): 8835–40. Bibcode:2009PNAS..106.8835G. doi:10.1073/pnas.0904128106. PMC 2690056. PMID 19451635.
  85. ^ Fischetti M (2014). "Trees That Pollute". Scientific American. 310 (6): 14. Bibcode:2014SciAm.310f..14F. doi:10.1038/scientificamerican0614-14. PMID 25004561.
  86. ^ "Volcanic Pollution |". Retrieved 27 February 2022.
  87. ^ "Air Pollution Emissions". US EPA. 2016. Retrieved 7 June 2022.
  88. ^ Environment and Climate Change Canada (14 June 2010). "Air pollutant emissions". Canada.ca. Retrieved 7 June 2022.
  89. ^ Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (20 February 2020). "Environmental and Health Impacts of Air Pollution: A Review". Frontiers in Public Health. 8: 14. doi:10.3389/fpubh.2020.00014. ISSN 2296-2565. PMC 7044178. PMID 32154200.
  90. ^ "AP 42, Volume I". US Environmental Protection Agency. Archived from the original on 24 September 2010. Retrieved 29 August 2010.
  91. ^ "United Kingdom's emission factor database". Naei.org.uk. Archived from the original on 7 July 2010. Retrieved 29 August 2010.
  92. ^ "EMEP/EEA air pollutant emission inventory guidebook—2009". Eea.europa.eu. European Environmental Agency. 19 June 2009. Retrieved 11 December 2012.
  93. ^ "Environmental Pollution". Theenvironmentalblog.org. 16 December 2011. Retrieved 11 December 2012.
  94. ^ "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (reference manual)". Ipcc-nggip.iges.or.jp. Archived from the original on 21 March 2008. Retrieved 29 August 2010.
  95. ^ US EPA O (10 December 2015). "Managing Air Quality - Air Pollutant Types". www.epa.gov. US Environmental Protection Agency. Retrieved 27 February 2022.
  96. ^ Hidy G (2012). Aerosols: An Industrial and Environmental Science. Elsevier. p. 1. ISBN 978-0-323-14251-9.
  97. ^ Carrington D (4 November 2021). "Ammonia from farms behind 60% of UK particulate air pollution – study". The Guardian. Retrieved 7 November 2021.
  98. ^ "The Effect of Changing Background Emissions on External Cost Estimates for Secondary Particulates". Open environmental sciences. 2008.
  99. ^ Johnson K (18 April 2009). "How Carbon Dioxide Became a 'Pollutant'". Wall Street Journal.
  100. ^ "Carbon dioxide". The National Institute for Occupational Safety and Health (NIOSH). U.S. Department of Health & Human Services. 30 October 2019. Retrieved 19 April 2023.
  101. ^ a b "General hazards of Carbon Dioxide". Health and Safety Executive. UK Government. Retrieved 19 April 2023. For over a century CO2 has been recognised as a workplace hazard at high concentrations. CO2 is naturally present in the air we breathe at a concentration of about 0.037% and is not harmful to health at low concentrations.
  102. ^ Air Quality Guidelines Global Update 2005: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Copenhagen, Denmark: World Health Organization. 2006. p. 12. ISBN 92-890-2192-6. Some pollutants, and especially those associated with greenhouse warming effects (carbon dioxide, nitrous oxide and methane)...
  103. ^ Vaidyanathan G. "The Worst Climate Pollution Is Carbon Dioxide". Scientific American.
  104. ^ Barbalace RC (7 November 2006). "CO2 Pollution and Global Warming: When does carbon dioxide become a pollutant?". Environmentalchemistry.com.
  105. ^ Friedman L (22 August 2022). "Democrats Designed the Climate Law to Be a Game Changer. Here's How". The New York Times. Retrieved 19 April 2023.
  106. ^ "Graphic: The relentless rise of carbon dioxide". Climate Change: Vital Signs of the Planet. NASA.
  107. ^ "How much of U.S. carbon dioxide emissions are associated with electricity generation?". Retrieved 16 December 2016.
  108. ^ "Full Mauna Loa CO2 record". Earth System Research Laboratory. Retrieved 10 January 2017.
  109. ^ "OECD Test Guidelines for Chemicals".
  110. ^ "The Strange Lake Nyos CO2 Gas Disaster: Impacts and The Displacement and Return of Affected Communities".
  111. ^ "Carbon Monoxide Poisoning – NHS". 17 October 2017.
  112. ^ US EPA O (5 June 2017). "Basic Ozone Layer Science". www.epa.gov. US Environmental Protection Agency. Retrieved 7 June 2022.
  113. ^ "Chlorofluorocarbons (CFCs) are heavier than air, so how do scientists suppose that these chemicals reach the altitude of the ozone layer to adversely affect it?". Scientific American. Retrieved 7 June 2022.
  114. ^ "What is Particulate Matter? | Urban Environmental Program in New England". US EPA. 29 March 2022. Archived from the original on 7 June 2022. Retrieved 7 June 2022.
  115. ^ Munsif R, Zubair M, Aziz A, Nadeem Zafar M (7 January 2021), Viskup R (ed.), "Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation", Environmental Emissions, IntechOpen, doi:10.5772/intechopen.93104, ISBN 978-1-83968-510-1, S2CID 234150821, retrieved 7 June 2022
  116. ^ "Evidence growing of air pollution's link to heart disease, death". Archived from the original on 3 June 2010. Retrieved 18 May 2010. // American Heart Association. 10 May 2010
  117. ^ Balmes J, Fine J, Sheppard D (1987). "Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide". American Review of Respiratory Disease. 136 (5): 1117–21. doi:10.1164/ajrccm/136.5.1117. PMID 3674573.
  118. ^ Singh R, Kumar S, Karmakar S, Siddiqui AJ, Mathur A, Adnan M, et al. (2021). "2: Causes, Consequences, and Control of Persistent Organic Pollutants". In Kumar N, Shukla V (eds.). Persistent Organic Pollutants in the Environment: Origin and Role. CRC Press. pp. 31–54. ISBN 978-1-003-05317-0. Retrieved 11 June 2022.
  119. ^ "Newly detected air pollutant mimics damaging effects of cigarette smoke" (PDF). Physorg.com. Retrieved 29 August 2010.
  120. ^ "Infant Inhalation Of Ultra-fine Air Pollution Linked To Adult Lung Disease". Sciencedaily.com. 23 July 2009. Retrieved 29 August 2010.
  121. ^ Kim KH, Jahan SA, Kabir E, Brown RJ (1 October 2013). "A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects". Environment International. 60: 71–80. Bibcode:2013EnInt..60...71K. doi:10.1016/j.envint.2013.07.019. ISSN 0160-4120. PMID 24013021.
  122. ^ "Technical Overview of Volatile Organic Compounds". US Environmental Protection Agency. 14 March 2023. Retrieved 20 April 2023.
  123. ^ Read "Rethinking the Ozone Problem in Urban and Regional Air Pollution" at NAP.edu. 1991. doi:10.17226/1889. ISBN 978-0-309-04631-2.
  124. ^ "ESS Topic 6.3: Photochemical Smog". Amazing World of Science With Mr. Green. Retrieved 7 June 2022.
  125. ^ Arkansas Energy Department of Energy and Environment. "Cars and Air Pollution". www.adeq.state.ar.us. Retrieved 24 August 2024.
  126. ^ Acharya B (1 January 2018), Basu P (ed.), "Chapter 10 - Cleaning of Product Gas of Gasification", Biomass Gasification, Pyrolysis and Torrefaction (Third Edition), Academic Press, pp. 373–391, ISBN 978-0-12-812992-0, retrieved 7 June 2022
  127. ^ "smog | National Geographic Society". education.nationalgeographic.org. National Geographic. Retrieved 7 June 2022.
  128. ^ "Hazardous Air Pollutants". US Environmental Protection Agency. 9 February 2023. Retrieved 29 April 2023.
  129. ^ "Air quality standards". European Environment Agency. Retrieved 29 April 2023.
  130. ^ a b c d e Vallero DA (1 October 2007). Fundamentals of Air Pollution (4th ed.). Academic Press. ISBN 9780124054813.
  131. ^ Dons E (2011). "Impact of time-activity patterns on personal exposure to black carbon". Atmospheric Environment. 45 (21): 3594–3602. Bibcode:2011AtmEn..45.3594D. doi:10.1016/j.atmosenv.2011.03.064.
  132. ^ Dons E (2019). "Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring". Atmospheric Environment. 213: 424–432. Bibcode:2019AtmEn.213..424D. doi:10.1016/j.atmosenv.2019.06.035. hdl:10044/1/80194. S2CID 197131423.
  133. ^ Carrington D (22 September 2021). "WHO slashes guideline limits on air pollution from fossil fuels". The Guardian. Retrieved 22 September 2021.
  134. ^ "Most of the World Breathes Unsafe Air, Taking More Than 2 Years Off Global Life Expectancy". AQLI. 14 June 2022. Retrieved 12 July 2022.
  135. ^ a b "Taking an Exposure History: What Are Possible Sources of Indoor Air Pollution | Environmental Medicine | ATSDR". www.atsdr.cdc.gov. 9 February 2021. Retrieved 8 July 2024.Public Domain This article incorporates text from this source, which is in the public domain.
  136. ^ a b Duflo E, Greenstone M, Hanna R (26 November 2008). "Indoor air pollution, health and economic well-being". S.A.P.I.EN.S. 1 (1). Retrieved 29 August 2010.
  137. ^ a b "Improved Clean Cookstoves". Project Drawdown. 7 February 2020. Retrieved 5 December 2020.
  138. ^ Twilley N (1 April 2019). "The Hidden Air Pollution in Our Homes". The New Yorker – via www.newyorker.com.
  139. ^ "Bucknell tent death: Hannah Thomas-Jones died from carbon monoxide poisoning". BBC News. 17 January 2013. Retrieved 22 September 2015.
  140. ^ "Chapter 6.2. Asbestos. Air quality guidelines, Second edition" (PDF). World Health Organization Europe. Archived from the original (PDF) on 24 May 2011.
  141. ^ a b Carrington D (18 May 2021). "Air pollution linked to 'huge' rise in child asthma GP visits". The Guardian. Retrieved 22 May 2021.
  142. ^ Kampa M, Castanas E (1 January 2008). "Human health effects of air pollution". Environmental Pollution. Proceedings of the 4th International Workshop on Biomonitoring of Atmospheric Pollution (With Emphasis on Trace Elements). 151 (2): 362–367. Bibcode:2008EPoll.151..362K. doi:10.1016/j.envpol.2007.06.012. ISSN 0269-7491. PMID 17646040. S2CID 38513536.
  143. ^ Dovjak M, Kukec A (2019). "Health Outcomes Related to Built Environments". Creating Healthy and Sustainable Buildings. Switzerland: Springer International Publishing. pp. 43–82. doi:10.1007/978-3-030-19412-3_2. ISBN 978-3-030-19411-6. OCLC 1285508857. S2CID 190160283.
  144. ^ "Long-Term Exposure to Low Levels of Air Pollution Increases Risk of Heart and Lung Disease". Science Daily. 22 February 2021.
  145. ^ Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ (1 April 2021). "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem". Environmental Research. 195: 110754. Bibcode:2021ER....19510754V. doi:10.1016/j.envres.2021.110754. ISSN 0013-9351. PMID 33577774.
  146. ^ "Air quality and health". Who.int. World Health Organization. Retrieved 26 November 2011.
  147. ^ US EPA O (22 February 2013). "Regulatory and Guidance Information by Topic: Air". www.epa.gov. Retrieved 10 November 2022.
  148. ^ Majumder N, Kodali V, Velayutham M, Goldsmith T, Amedro J, Khramtsov VV, et al. (2022). "Aerosol physicochemical determinants of carbon black and ozone inhalation co-exposure induced pulmonary toxicity". Toxicological Sciences. 191 (1): 61–78. doi:10.1093/toxsci/kfac113. PMC 9887725. PMID 36303316.
  149. ^ Ritchie H, Roser M (2021). "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 15 January 2024. Data sources: Markandya & Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
  150. ^ Roser M (18 March 2024). "Data review: how many people die from air pollution?". Our World in Data.
  151. ^ Whitacre P (9 February 2021). "Air Pollution Accounts for 1 in 8 Deaths Worldwide, According to New WHO Estimates". National Institute of Environmental Health Sciences. Archived from the original on 4 November 2022. Retrieved 18 February 2022.
  152. ^ Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V (9 April 2019). "Effects of fossil fuel and total anthropogenic emission removal on public health and climate". Proceedings of the National Academy of Sciences. 116 (15): 7192–7197. Bibcode:2019PNAS..116.7192L. doi:10.1073/pnas.1819989116. ISSN 0027-8424. PMC 6462052. PMID 30910976.
  153. ^ a b Carrington D (12 March 2019). "Air pollution deaths are double previous estimates, finds research". The Guardian. Retrieved 12 March 2019.
  154. ^ Dickie G (18 May 2022). "Pollution killing 9 million people a year, Africa hardest hit - study". Reuters. Retrieved 23 June 2022.
  155. ^ World Health Organisation (29 October 2018). "More than 90% of the world's children breathe toxic air every day". www.who.int. Retrieved 13 August 2024.
  156. ^ a b "Ambient (outdoor) air pollution". www.who.int. World Health Organization. Retrieved 20 December 2021.
  157. ^ Baccarelli AA, Hales N, Burnett RT, Jerrett M, Mix C, Dockery DW, et al. (1 November 2016). "Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A Nationwide Analysis of the United States, 1980–2010". Environmental Health Perspectives. 124 (11): 1744–1750. doi:10.1289/EHP197. PMC 5089884. PMID 27138440.
  158. ^ Pope CA (15 December 2003). "Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease". Circulation. 109 (1): 71–77. doi:10.1161/01.CIR.0000108927.80044.7F. PMID 14676145.
  159. ^ Harris G (25 January 2014). "Beijing's Bad Air Would Be Step Up for Smoggy Delhi". The New York Times. ISSN 0362-4331. Retrieved 28 April 2023.
  160. ^ Owusu PA, Sarkodie SA (10 November 2020). "Global estimation of mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution". Science of the Total Environment. 742: 140636. Bibcode:2020ScTEn.74240636O. doi:10.1016/j.scitotenv.2020.140636. ISSN 0048-9697. PMID 32721745. S2CID 220848545.
  161. ^ "Lancet study: Pollution killed 2.3 million Indians in 2019". BBC News. 18 May 2022. Retrieved 28 April 2023.
  162. ^ Mr Chen's claim was made in The Lancet (December 2013 issue) and reported in The Daily Telegraph 8 January 2014 p. 15 'Air pollution killing up to 500,000 Chinese each year, admits former health minister.
  163. ^ Feng T, Chen H, Liu J (15 December 2022). "Air pollution-induced health impacts and health economic losses in China driven by US demand exports". Journal of Environmental Management. 324: 116355. Bibcode:2022JEnvM.32416355F. doi:10.1016/j.jenvman.2022.116355. ISSN 0301-4797. PMID 36179470.
  164. ^ a b "Car emissions: taking tests out of the lab and onto the road – News". European Parliament. 25 February 2016. Retrieved 11 January 2018.
  165. ^ "Air pollution causes early deaths". BBC. 21 February 2005. Retrieved 14 August 2012.
  166. ^ "Complete Guide To The 'Toxin Tax' For Diesel Cars". Motorway. Retrieved 25 May 2017.
  167. ^ "Study links traffic pollution to thousands of deaths". The Guardian. London, UK. 15 April 2008. Archived from the original on 20 April 2008. Retrieved 15 April 2008.
  168. ^ Mailloux NA, Abel DW, Holloway T, Patz JA (16 May 2022). "Nationwide and Regional PM2.5-Related Air Quality Health Benefits From the Removal of Energy-Related Emissions in the United States". GeoHealth. 6 (5): e2022GH000603. Bibcode:2022GHeal...6..603M. doi:10.1029/2022GH000603. PMC 9109601. PMID 35599962.
  169. ^ a b Henneman L, Choirat C, Dedoussi I, Dominici F, Roberts J, Zigler C (24 November 2023). "Mortality risk from United States coal electricity generation". Science. 382 (6673): 941–946. Bibcode:2023Sci...382..941H. doi:10.1126/science.adf4915. PMC 10870829. PMID 37995235.
  170. ^ a b Nansai K, Tohno S, Chatani S, Kanemoto K, Kagawa S, Kondo Y, et al. (2 November 2021). "Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually". Nature Communications. 12 (1): 6286. Bibcode:2021NatCo..12.6286N. doi:10.1038/s41467-021-26348-y. ISSN 2041-1723. PMC 8563796. PMID 34728619.
  171. ^ Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ (1 April 2021). "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem". Environmental Research. 195: 110754. Bibcode:2021ER....19510754V. doi:10.1016/j.envres.2021.110754. ISSN 0013-9351. PMID 33577774. S2CID 231909881. Retrieved 5 March 2021.
  172. ^ Mackenzie J, Turrentine J (22 June 2021). "Air Pollution: Everything You Need to Know". NRDC. Retrieved 18 June 2022.
  173. ^ Farrow A, Miller KA, Myllyvirta L (February 2020). Toxic air: The price of fossil fuels (PDF). Seoul: Greenpeace Southeast Asia.
  174. ^ Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. (2008). "Diesel exhaust inhalation increases thrombus formation in man". European Heart Journal. 29 (24): 3043–51. doi:10.1093/eurheartj/ehn464. PMID 18952612.
  175. ^ Törnqvist HK, Mills NL, Gonzalez M, Miller MR, Robinson SD, Megson IL, et al. (2007). "Persistent Endothelial Dysfunction in Humans after Diesel Exhaust Inhalation". American Journal of Respiratory and Critical Care Medicine. 176 (4): 395–400. doi:10.1164/rccm.200606-872OC. PMID 17446340.
  176. ^ "Air pollution from G20 consumers caused two million deaths in 2010". New Scientist. Retrieved 11 December 2021.
  177. ^ Tankersley J (8 January 2010). "EPA proposes nation's strictest smog limits ever". Los Angeles Times. Retrieved 14 August 2012.
  178. ^ "EPA slideshow" (PDF). Retrieved 11 December 2012.
  179. ^ "EPA Strengthens Ozone Standards to Protect Public Health/Science-based standards to reduce sick days, asthma attacks, emergency room visits, greatly outweigh costs (10/1/2015)". Yosemite.epa.gov. Retrieved 11 January 2018.
  180. ^ Grossni M (13 November 2008). "Human cost of valley's dirty air: $6.3 billion". Sacramento Bee. Archived from the original on 16 December 2008. Retrieved 14 August 2012.
  181. ^ Sahagun L (13 November 2008). "Pollution saps state's economy, study says". Los Angeles Times. Retrieved 14 August 2012.
  182. ^ Kay J (13 November 2008). "Bad air costing state's economy billions". San Francisco Chronicle. Retrieved 14 August 2012.
  183. ^ "Human health may be at risk from long-term exposure to air pollution below current air quality standards and guidelines". British Medical Journal. Retrieved 18 October 2021.
  184. ^ Strak M, Weinmayr G, Rodopoulou S, Chen J, Hoogh Kd, Andersen ZJ, et al. (2 September 2021). "Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis". BMJ. 374: n1904. doi:10.1136/bmj.n1904. ISSN 1756-1833. PMC 8409282. PMID 34470785.
  185. ^ Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. (May 2017). "Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015". The Lancet. 389 (10082): 1907–1918. Bibcode:2017Lanc..389.1907C. doi:10.1016/S0140-6736(17)30505-6. ISSN 0140-6736. PMC 5439030. PMID 28408086.
  186. ^ a b de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P (8 March 2022). "Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses". Journal of Internal Medicine. 291 (6): 779–800. doi:10.1111/joim.13467. eISSN 1365-2796. ISSN 0954-6820. PMC 9310863. PMID 35138681.
  187. ^ a b Mayor S (12 June 2016). "Air pollution is a leading risk factor for stroke, global study shows". BMJ. 353: i3272. doi:10.1136/bmj.i3272. eISSN 1756-1833. PMID 27298274.
  188. ^ Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. (August 2016). "Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". The Lancet Neurology. 15 (9): 913–924. doi:10.1016/S1474-4422(16)30073-4. hdl:10292/14061. ISSN 1474-4422. PMID 27291521.
  189. ^ Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. (2007). "Long-term exposure to air pollution and incidence of cardiovascular events in women". The New England Journal of Medicine. 356 (5): 447–58. doi:10.1056/NEJMoa054409. PMID 17267905.
  190. ^ Andersen ZJ, Kristiansen LC, Andersen KK, Olsen TS, Hvidberg M, Jensen SS, et al. (2011). "Stroke and Long-Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide: A Cohort Study". Stroke. 43 (2): 320–25. doi:10.1161/STROKEAHA.111.629246. PMID 22052517.
  191. ^ Provost E, Madhloum N, Int Panis L, De Boever P, Nawrot T (May 2015). "Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence". PLOS ONE. 10 (5): e0127014. Bibcode:2015PLoSO..1027014P. doi:10.1371/journal.pone.0127014. PMC 4430520. PMID 25970426. S2CID 11741224.
  192. ^ Brook R, Rajagopalan S, Pope CI, Brook J, Bhatnagar A (2010). "Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association". Circulation. 121 (21): 2331–78. doi:10.1161/cir.0b013e3181dbece1. hdl:2027.42/78373. PMID 20458016.
  193. ^ Louwies T, Int Panis L, Kicinski M, De Boever P, Nawrot TS (2013). "Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults". Environmental Health Perspectives. 121 (9): 1011–16. doi:10.1289/ehp.1205721. PMC 3764070. PMID 23777785. S2CID 6748539.
  194. ^ Gehring U, Wijga AH, Brauer M, Fischer P, de Jongste JC, Kerkhof M, et al. (2010). "Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life". American Journal of Respiratory and Critical Care Medicine. 181 (6): 596–603. doi:10.1164/rccm.200906-0858OC. PMID 19965811.
  195. ^ Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, et al. (2011). "Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. [Research Support, Non-U.S. Gov't]". American Journal of Respiratory and Critical Care Medicine. 183 (4): 455–461. doi:10.1164/rccm.201006-0937OC. PMID 20870755. S2CID 3945468.
  196. ^ Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society (1996). "Health effects of outdoor air pollution". American Journal of Respiratory and Critical Care Medicine. 153 (1): 3–50. doi:10.1164/ajrccm.153.1.8542133. PMID 8542133.
  197. ^ Andersen ZJ, Bonnelykke K, Hvidberg M, Jensen SS, Ketzel M, Loft S, et al. (2011). "Long-term exposure to air pollution and asthma hospitalisations in older adults: a cohort study". Thorax. 67 (1): 6–11. doi:10.1136/thoraxjnl-2011-200711. PMID 21890573.
  198. ^ Zoidis JD (1999). "The Impact of Air Pollution on COPD". RT: For Decision Makers in Respiratory Care.
  199. ^ World Health Organisation. "Ambient air pollution". www.who.int. Retrieved 10 November 2023.
  200. ^ "Understanding Air Pollution". Respiratory Health Association. Retrieved 15 August 2022.
  201. ^ Holland WW, Reid DD. "The urban factor in chronic bronchitis" Lancet 1965;I:445–448.
  202. ^ Gauderman W (2007). "Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study". The Lancet. 369 (9561): 571–77. CiteSeerX 10.1.1.541.1258. doi:10.1016/S0140-6736(07)60037-3. PMID 17307103. S2CID 852646.
  203. ^ Int Panis L (2017). "Short-term air pollution exposure decreases lung function: a repeated measures study in healthy adults". Environmental Health. 16 (1): 60. Bibcode:2017EnvHe..16...60I. doi:10.1186/s12940-017-0271-z. PMC 5471732. PMID 28615020. S2CID 20491472.
  204. ^ Sunyer J (2001). "Urban air pollution and Chronic Obstructive Pulmonary disease: a review". European Respiratory Journal. 17 (5): 1024–33. doi:10.1183/09031936.01.17510240. PMID 11488305.
  205. ^ a b "Cancer breakthrough is a 'wake-up' call on danger of air pollution". The Guardian. 10 September 2022. Retrieved 11 September 2022.
  206. ^ Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, et al. (5 April 2023). "Lung adenocarcinoma promotion by air pollutants". Nature. 616 (7955): 159–167. Bibcode:2023Natur.616..159H. doi:10.1038/s41586-023-05874-3. ISSN 1476-4687. PMC 7614604. PMID 37020004.
  207. ^ "Education Data, Visualizations & Graphics on Air Quality and PM2.5". www.cleanairresources.com. Retrieved 19 September 2019.
  208. ^ Gallagher J (17 December 2015). "Cancer is not just 'bad luck' but down to environment, study suggests". BBC. Retrieved 17 December 2015.
  209. ^ a b Chen H, Goldberg M, Villeneuve P (October–December 2008). "A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases". Reviews on Environmental Health. 23 (4): 243–97. doi:10.1515/reveh.2008.23.4.243. PMID 19235364. S2CID 24481623.
  210. ^ Saber E, Heydari G (May 2012). "Flow patterns and deposition fraction of particles in the range of 0.1–10 μm at trachea and the first third generations under different breathing conditions". Computers in Biology and Medicine. 42 (5): 631–38. doi:10.1016/j.compbiomed.2012.03.002. PMID 22445097.
  211. ^ Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sorensen M, et al. (2011). "Lung cancer incidence and long-term exposure to air pollution from traffic. [Research Support, Non-U.S. Gov't]". Environmental Health Perspectives. 119 (6): 860–65. doi:10.1289/ehp.1002353. PMC 3114823. PMID 21227886. S2CID 1323189.
  212. ^ Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sorensen M, et al. (2011). "Air pollution from traffic and cancer incidence: a Danish cohort study". Environmental Health. 10 (1): 67. Bibcode:2011EnvHe..10...67R. doi:10.1186/1476-069X-10-67. PMC 3157417. PMID 21771295. S2CID 376897.
  213. ^ Yacong Bo (2021). "Reduced Ambient PM2.5 Was Associated with a Decreased Risk of Chronic Kidney Disease: A Longitudinal Cohort Study". Environmental Science & Technology. 55 (10): 6876–6883. Bibcode:2021EnST...55.6876B. doi:10.1021/acs.est.1c00552. PMID 33904723. S2CID 233408693.
  214. ^ Blum MF, Surapaneni A, Stewart JD, Liao D, Yanosky JD, Whitsel EA, et al. (6 March 2020). "Particulate Matter and Albuminuria, Glomerular Filtration Rate, and Incident CKD". Clinical Journal of the American Society of Nephrology. 15 (3): 311–319. doi:10.2215/CJN.08350719. ISSN 1555-9041. PMC 7057299. PMID 32108020.
  215. ^ a b c d e f Conforti A, Mascia M, Cioffi G, De Angelis C, Coppola G, De Rosa P, et al. (30 December 2018). "Air pollution and female fertility: a systematic review of literature". Reproductive Biology and Endocrinology. 16 (1): 117. doi:10.1186/s12958-018-0433-z. ISSN 1477-7827. PMC 6311303. PMID 30594197.
  216. ^ Canipari R, De Santis L, Cecconi S (January 2020). "Female Fertility and Environmental Pollution". International Journal of Environmental Research and Public Health. 17 (23): 8802. doi:10.3390/ijerph17238802. ISSN 1660-4601. PMC 7730072. PMID 33256215.
  217. ^ da Silva Junior FC, Felipe MB, Castro DE, Araújo SC, Sisenando HC, Batistuzzo de Medeiros SR (1 June 2021). "A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs". Environmental Pollution. 278: 116838. Bibcode:2021EPoll.27816838D. doi:10.1016/j.envpol.2021.116838. ISSN 0269-7491. PMID 33714059. S2CID 232222865.
  218. ^ Plunk EC, Richards SM (January 2020). "Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis". International Journal of Molecular Sciences. 21 (23): 9191. doi:10.3390/ijms21239191. ISSN 1422-0067. PMC 7731392. PMID 33276521.
  219. ^ Perono GA, Petrik JJ, Thomas PJ, Holloway AC (1 January 2022). "The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function". Current Research in Toxicology. 3: 100070. Bibcode:2022CRTox...300070P. doi:10.1016/j.crtox.2022.100070. ISSN 2666-027X. PMC 9043394. PMID 35492299.
  220. ^ a b Jurewicz J, Dziewirska E, Radwan M, Hanke W (23 December 2018). "Air pollution from natural and anthropic sources and male fertility". Reproductive Biology and Endocrinology. 16 (1): 109. doi:10.1186/s12958-018-0430-2. ISSN 1477-7827. PMC 6304234. PMID 30579357.
  221. ^ Frutos V, González-Comadrán M, Solà I, Jacquemin B, Carreras R, Checa Vizcaíno MA (2 January 2015). "Impact of air pollution on fertility: a systematic review". Gynecological Endocrinology. 31 (1): 7–13. doi:10.3109/09513590.2014.958992. ISSN 0951-3590. PMID 25212280. S2CID 41594539.
  222. ^ Checa Vizcaíno MA, González-Comadran M, Jacquemin B (September 2016). "Outdoor air pollution and human infertility: a systematic review". Fertility and Sterility. 106 (4): 897–904.e1. doi:10.1016/j.fertnstert.2016.07.1110. ISSN 0015-0282. PMID 27513553.
  223. ^ a b c Carré J, Gatimel N, Moreau J, Parinaud J, Léandri R (28 July 2017). "Does air pollution play a role in infertility?: a systematic review". Environmental Health. 16 (1): 82. Bibcode:2017EnvHe..16...82C. doi:10.1186/s12940-017-0291-8. ISSN 1476-069X. PMC 5534122. PMID 28754128.
  224. ^ Jurewicz J, Dziewirska E, Radwan M, Hanke W (2018). "Air pollution from natural and anthropic sources and male fertility". Reproductive Biology and Endocrinology. 16 (1): 109. doi:10.1186/s12958-018-0430-2. PMC 6304234. PMID 30579357. S2CID 57376088. Retrieved 5 October 2022.
  225. ^ a b Air pollution and child health: prescribing clean air. Summary. Geneva: World Health Organisation. 2018. pp. 2–6.
  226. ^ a b Gordon B, Mackay R, Rehfuess E (2004). "Polluted Cities: The Air Children Breathe". Inheriting the World: The Atlas of Children's Health and the Environment. World Health Organisation.
  227. ^ Pieters N, Koppen G, Van Poppel M, De Prins S, Cox B, Dons E, et al. (March 2015). "Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children". Environmental Health Perspectives. 123 (7): 737–42. doi:10.1289/ehp.1408121. PMC 4492263. PMID 25756964.
  228. ^ Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, et al. (1 June 2012). "Prenatal Polycyclic Aromatic Hydrocarbon (PAH) Exposure and Child Behavior at Age 6–7 Years". Environmental Health Perspectives. 120 (6): 921–926. doi:10.1289/ehp.1104315. PMC 3385432. PMID 22440811.
  229. ^ Perera FP, Chang Hw, Tang D, Roen EL, Herbstman J, Margolis A, et al. (5 November 2014). "Early-Life Exposure to Polycyclic Aromatic Hydrocarbons and ADHD Behavior Problems". PLOS ONE. 9 (11): e111670. Bibcode:2014PLoSO...9k1670P. doi:10.1371/journal.pone.0111670. ISSN 1932-6203. PMC 4221082. PMID 25372862.
  230. ^ Becerra TA, Wilhelm M, Olsen J, Cockburn M, Ritz B (1 March 2013). "Ambient Air Pollution and Autism in Los Angeles County, California". Environmental Health Perspectives. 121 (3): 380–386. doi:10.1289/ehp.1205827. PMC 3621187. PMID 23249813.
  231. ^ Carter SA, Rahman MM, Lin JC, Shu YH, Chow T, Yu X, et al. (1 January 2022). "In utero exposure to near-roadway air pollution and autism spectrum disorder in children". Environment International. 158: 106898. Bibcode:2022EnInt.15806898C. doi:10.1016/j.envint.2021.106898. ISSN 0160-4120. PMC 8688235. PMID 34627014.
  232. ^ Flanagan E, Malmqvist E, Rittner R, Gustafsson P, Källén K, Oudin A (8 March 2023). "Exposure to local, source-specific ambient air pollution during pregnancy and autism in children: a cohort study from southern Sweden". Scientific Reports. 13 (1): 3848. Bibcode:2023NatSR..13.3848F. doi:10.1038/s41598-023-30877-5. ISSN 2045-2322. PMC 9995328. PMID 36890287.
  233. ^ Ritz B, Liew Z, Yan Q, Cuia X, Virk J, Ketzel M, et al. (December 2018). "Air pollution and autism in Denmark". Environmental Epidemiology. 2 (4): e028. doi:10.1097/EE9.0000000000000028. PMC 6474375. PMID 31008439.
  234. ^ Perera F, Herbstman J (1 April 2011). "Prenatal environmental exposures, epigenetics, and disease". Reproductive Toxicology. Prenatal Programming and Toxicity II (PPTOX II): Role of Environmental Stressors in the Developmental Origins of Disease. 31 (3): 363–373. Bibcode:2011RepTx..31..363P. doi:10.1016/j.reprotox.2010.12.055. ISSN 0890-6238. PMC 3171169. PMID 21256208.
  235. ^ Papamitsou T, Sirak S, Kavvadas D (January–March 2020). "Air pollution and preterm birth: a recommendation for further study in Greece". Hippokratia. 24 (1): 44. PMC 7733367. PMID 33364740.
  236. ^ Fleischer NL, Merialdi M, van Donkelaar A, Vadillo-Ortega F, Martin RV, Betran AP, et al. (1 April 2014). "Outdoor air pollution, preterm birth, and low birth weight: analysis of the World Health Organization global survey on maternal and perinatal health". Environmental Health Perspectives. 122 (4): 425–30. doi:10.1289/ehp.1306837. ISSN 1552-9924. PMC 3984219. PMID 24508912. S2CID 3947454.
  237. ^ a b c Malley CS, Kuylenstierna JC, Vallack HW, Henze DK, Blencowe H, Ashmore MR (1 April 2017). "Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment" (PDF). Environment International. 101: 173–82. Bibcode:2017EnInt.101..173M. doi:10.1016/j.envint.2017.01.023. ISSN 1873-6750. PMID 28196630.
  238. ^ Bank EI (19 October 2022). Finance in Africa - Navigating the financial landscape in turbulent times. European Investment Bank. ISBN 978-92-861-5382-2.
  239. ^ "Silent Suffocation in Africa - Air Pollution is a Growing Menace, Affecting the Poorest Children the Most" (PDF). UNICEF.
  240. ^ "The cost of air pollution in Africa". Africa Renewal. Retrieved 31 October 2022.
  241. ^ Wang X, Ding H, Ryan L, Xu X (1 May 1997). "Association between air pollution and low birth weight: a community-based study". Environmental Health Perspectives. 105 (5): 514–20. doi:10.1289/ehp.97105514. ISSN 0091-6765. PMC 1469882. PMID 9222137. S2CID 2707126.
  242. ^ Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C (1 May 2008). "A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes". Environmental Health Perspectives. 116 (5): 680–6. doi:10.1289/ehp.10952. PMC 2367679. PMID 18470315. S2CID 7721551.
  243. ^ Bos I, De Boever P, Int Panis L, Meeusen R (2014). "Physical Activity, Air Pollution and the Brain". Sports Medicine. 44 (11): 1505–18. doi:10.1007/s40279-014-0222-6. PMID 25119155. S2CID 207493297.
  244. ^ Air pollution linked to much greater risk of dementia The Guardian
  245. ^ Julvez J, López-Vicente M, Warembourg C, Maitre L, Philippat C, Gützkow KB, et al. (1 September 2021). "Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries". Environmental Pollution. 284: 117404. Bibcode:2021EPoll.28417404J. doi:10.1016/j.envpol.2021.117404. ISSN 0269-7491. PMC 8287594. PMID 34077897.
  246. ^ a b Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM (June 2020). "Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders". Pharmacology & Therapeutics. 210: 107523. doi:10.1016/j.pharmthera.2020.107523. ISSN 1879-016X. PMC 7245732. PMID 32165138.
  247. ^ Volk HE, Perera F, Braun JM, Kingsley SL, Gray K, Buckley J, et al. (1 May 2021). "Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO". Environmental Research. 196: 110320. Bibcode:2021ER....19610320V. doi:10.1016/j.envres.2020.110320. ISSN 0013-9351. PMC 8060371. PMID 33098817.
  248. ^ Shang L, Yang L, Yang W, Huang L, Qi C, Yang Z, et al. (1 July 2020). "Effects of prenatal exposure to NO2 on children's neurodevelopment: a systematic review and meta-analysis". Environmental Science and Pollution Research. 27 (20): 24786–24798. Bibcode:2020ESPR...2724786S. doi:10.1007/s11356-020-08832-y. ISSN 1614-7499. PMC 7329770. PMID 32356052. S2CID 216650267.
  249. ^ Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdörster G, et al. (5 June 2014). "Early Postnatal Exposure to Ultrafine Particulate Matter Air Pollution: Persistent Ventriculomegaly, Neurochemical Disruption, and Glial Activation Preferentially in Male Mice". Environmental Health Perspectives. 122 (9): 939–945. doi:10.1289/ehp.1307984. ISSN 0091-6765. PMC 4154219. PMID 24901756.
  250. ^ McEnaney M (7 June 2014). "Air pollution link discovered to autism, schizophrenia risks". Tech Times. Retrieved 8 June 2014.
  251. ^ "New evidence links air pollution to autism, schizophrenia". ScienceDaily. 5 June 2014. Retrieved 28 August 2024.
  252. ^ Persico C, Marcotte DE (November 2022). Air Quality and Suicide. Working Paper Series. National Bureau of Economic Research. doi:10.3386/w30626.cite book: CS1 maint: date and year (link)
  253. ^ Symons A (15 December 2022). "Suicide rates rise as air quality worsens, study finds". euronews. Retrieved 19 December 2022.
  254. ^ "New Study Demonstrates Indoor Building Environment Has Significant, Positive Impact on Cognitive Function". The New York Times. 26 October 2015. Archived from the original on 9 November 2020. Retrieved 10 November 2015.
  255. ^ Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (2015). "Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments". Environmental Health Perspectives. 124 (6): 805–12. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459. S2CID 12756582.
  256. ^ Cedeño Laurent JG, MacNaughton P, Jones E, Young AS, Bliss M, Flanigan S, et al. (1 September 2021). "Associations between acute exposures to PM2.5 and carbon dioxide indoors and cognitive function in office workers: a multicountry longitudinal prospective observational study". Environmental Research Letters. 16 (9): 094047. Bibcode:2021ERL....16i4047C. doi:10.1088/1748-9326/ac1bd8. ISSN 1748-9326. PMC 8942432. PMID 35330988. S2CID 237462480.
  257. ^ Qian D (29 June 2017). "Air Pollution and Mortality in the Medicare Population". New England Journal of Medicine. 376 (26): 2513–2522. doi:10.1056/NEJMoa1702747. PMC 5766848. PMID 28657878. S2CID 12038778.
  258. ^ Pathak M, Kuttippurath J (2022). "Air quality trends in rural India: analysis of NO2 pollution using satellite measurements". Environmental Science: Processes & Impacts. 24 (12): 2437–2449. doi:10.1039/D2EM00293K. ISSN 2050-7887. PMID 36413251. S2CID 253261324.
  259. ^ Woodyatt A (3 June 2020). "Scientists say they have found the cleanest air on Earth". CNN. Retrieved 3 June 2020.
  260. ^ Hong C, Mueller ND, Burney JA, Zhang Y, AghaKouchak A, Moore FC, et al. (2020). "Impacts of ozone and climate change on yields of perennial crops in California". Nature Food. 1 (3): 166–172. doi:10.1038/s43016-020-0043-8. S2CID 216425480.
  261. ^ Li H, Tang M, Cao A, Guo L (2022). "Assessing the relationship between air pollution, agricultural insurance, and agricultural green total factor productivity: evidence from China". Environmental Science and Pollution Research. 29 (52): 78381–78395. Bibcode:2022ESPR...2978381L. doi:10.1007/s11356-022-21287-7. ISSN 0944-1344. PMID 35689771. S2CID 249551277.
  262. ^ Kashyap R, Kuttippurath J, Patel VK (2023). "Improved air quality leads to enhanced vegetation growth during the COVID–19 lockdown in India". Applied Geography. 151: 102869. Bibcode:2023AppGe.15102869K. doi:10.1016/j.apgeog.2022.102869. ISSN 0143-6228. PMC 9805897. PMID 36619606. S2CID 255439854.
  263. ^ Kuttippurath J, Singh A, Dash SP, Mallic N, Clerbaux C, Van Damme M, et al. (2020). "Record high levels of atmospheric ammonia over India: Spatial and temporal analyses". Science of the Total Environment. 740: 139986. Bibcode:2020ScTEn.74039986K. doi:10.1016/j.scitotenv.2020.139986. ISSN 0048-9697. PMID 32927535. S2CID 221722300.
  264. ^ RWDI Consulting (2005). "Health and air quality 2005 – Phase 2: Valuation of health impacts from air quality in the lower Fraser Valley airshed" (PDF). Archived from the original (PDF) on 15 May 2011. Retrieved 29 August 2010.
  265. ^ UN Environment (11 October 2018). "Air pollution linked to "huge" reduction in intelligence". UN Environment. Retrieved 1 July 2019.
  266. ^ Lavy V, Rachkovski G, Yoresh O (2022). Heads Up: Does Air Pollution Cause Workplace Accidents? (Report). Cambridge, MA: National Bureau of Economic Research. doi:10.3386/w30715.
  267. ^ Smith A (12 February 2021). "Pollution on other planets could help us find aliens, Nasa says". The Independent. Archived from the original on 12 February 2021. Retrieved 6 March 2021.
  268. ^ "Can Alien Smog Lead Us to Extraterrestrial Civilizations?". Wired. Retrieved 6 March 2021.
  269. ^ Kopparapu R, Arney G, Haqq-Misra J, Lustig-Yaeger J, Villanueva G (22 February 2021). "Nitrogen Dioxide Pollution as a Signature of Extraterrestrial Technology". The Astrophysical Journal. 908 (2): 164. arXiv:2102.05027. Bibcode:2021ApJ...908..164K. doi:10.3847/1538-4357/abd7f7. ISSN 1538-4357. S2CID 231855390.
  270. ^ Chakrabarti S. "20th anniversary of world's worst industrial disaster". Australian Broadcasting Corporation.
  271. ^ Bell ML, Davis DL, Fletcher T (January 2004). "A Retrospective Assessment of Mortality from the London Smog Episode of 1952: The Role of Influenza and Pollution". Environ Health Perspect. 112 (1): 6–8. doi:10.1289/ehp.6539. PMC 1241789. PMID 14698923. S2CID 13045119.
  272. ^ Meselson M, Guillemin J, Hugh-Jones M (November 1994). "The Sverdlovsk anthrax outbreak of 1979" (PDF). Science. 266 (5188): 1202–08. Bibcode:1994Sci...266.1202M. doi:10.1126/science.7973702. PMID 7973702. Archived from the original (PDF) on 21 September 2006.
  273. ^ Davis D (2002). When Smoke Ran Like Water: Tales of Environmental Deception and the Battle Against Pollution. Basic Books. ISBN 978-0-465-01521-4.
  274. ^ Landrigan P (25 November 2016). "Air pollution and health". Lancet. 2 (1): E4–E5. doi:10.1016/S2468-2667(16)30023-8. PMID 29249479.
  275. ^ Camahan JV, Thurston DL (1998). "Trade-off Modeling for Product and Manufacturing Process Design for the Environment". Journal of Industrial Ecology. 2 (1): 79–92. Bibcode:1998JInEc...2...79C. doi:10.1162/jiec.1998.2.1.79. ISSN 1530-9290. S2CID 154730593.
  276. ^ Jacobson MZ, von Krauland AK, Coughlin SJ, Palmer FC, Smith MM (1 January 2022). "Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage". Renewable Energy. 184: 430–442. Bibcode:2022REne..184..430J. doi:10.1016/j.renene.2021.11.067. ISSN 0960-1481. S2CID 244820608.
  277. ^ Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (1 April 2019). "The role of renewable energy in the global energy transformation". Energy Strategy Reviews. 24: 38–50. Bibcode:2019EneSR..24...38G. doi:10.1016/j.esr.2019.01.006. ISSN 2211-467X. S2CID 135283552.
  278. ^ Burns J, Boogaard H, Polus S, Pfadenhauer LM, Rohwer AC, van-Erp AM, et al. (20 May 2019). "Interventions to Reduce Ambient Particulate Matter Air Pollution and Their Effect on Health". Cochrane Database of Systematic Reviews. 2019 (5): CD010919. doi:10.1002/14651858.CD010919.pub2. PMC 6526394. PMID 31106396.
  279. ^ Connolly K (30 August 2022). "Germany's €9 train tickets scheme 'saved 1.8m tons of CO2 emissions'". The Guardian. Retrieved 6 December 2022.
  280. ^ Fensterstock JC, Kurtzweg JA, Ozolins G (1971). "Reduction of Air Pollution Potential through Environmental Planning". Journal of the Air Pollution Control Association. 21 (7): 395–399. doi:10.1080/00022470.1971.10469547. PMID 5148260.
  281. ^ Fensterstock, Ketcham and Walsh, The Relationship of Land Use and Transportation Planning to Air Quality Management, Ed. George Hagevik, May 1972.
  282. ^ "The Importance of Development Plans/Land Use Policy for Development Control". www.oas.org. Retrieved 17 June 2022.
  283. ^ Kuttippurath J, Patel VK, Pathak M, Singh A (2022). "Improvements in SO2 pollution in India: role of technology and environmental regulations". Environmental Science and Pollution Research. 29 (52): 78637–78649. Bibcode:2022ESPR...2978637K. doi:10.1007/s11356-022-21319-2. ISSN 1614-7499. PMC 9189448. PMID 35696063. S2CID 249613744.
  284. ^ Palmer J (12 November 2011). "'Smog-Eating' Material Breaking into the Big Time". BBC News.
  285. ^ "Nanotechnology to gobble up pollution". BBC News. 15 May 2014. Retrieved 29 October 2014.
  286. ^ a b Jacobson MZ (2015). "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy road maps for the 50 United States". Energy and Environmental Science. 8 (7): 2093–2117. doi:10.1039/C5EE01283J.
  287. ^ Krelling C, Badami MG (1 January 2022). "Cost-effectiveness analysis of compressed natural gas implementation in the public bus transit fleet in Delhi, India". Transport Policy. 115: 49–61. doi:10.1016/j.tranpol.2021.10.019. ISSN 0967-070X.
  288. ^ Landrigan PJ (1 January 2017). "Air pollution and health". The Lancet Public Health. 2 (1): e4–e5. doi:10.1016/S2468-2667(16)30023-8. ISSN 2468-2667. PMID 29249479.
  289. ^ Lyons TJ, Kenworthy JR, Newman PW (1 January 1990). "Urban structure and air pollution". Atmospheric Environment. Part B. Urban Atmosphere. 24 (1): 43–48. Bibcode:1990AtmEB..24...43L. doi:10.1016/0957-1272(90)90008-I. ISSN 0957-1272.
  290. ^ McVeigh K (28 September 2021). "'False choice': is deep-sea mining required for an electric vehicle revolution?". The Guardian. Retrieved 24 October 2021.
  291. ^ Opray M (24 August 2017). "Nickel mining: the hidden environmental cost of electric cars". The Guardian. Retrieved 24 October 2021.
  292. ^ "Los Angeles Airport Pollutes City Air For Miles Downwind". Chemical and Engineering news. 30 May 2014. Retrieved 13 December 2019.
  293. ^ "NASA Confirms Biofuels Reduce Jet Emissions". Flyingmag.com. 23 March 2017. Retrieved 11 January 2018.
  294. ^ "Interseasonal Heat Transfer – Seasonal Heat Storage – GSHC – Renewable Heat & Renewable Cooling from ThermalBanks – Efficient Renewable Energy – Hybrid Renewable Energy Systems". Icax.co.uk. Retrieved 11 January 2018.
  295. ^ Ahuja D, Tatsutani M (7 April 2009). "Sustainable energy for developing countries". S.A.P.I.EN.S (in French). 2 (1). ISSN 1993-3800.
  296. ^ Oyedepo SO (23 July 2012). "Energy and sustainable development in Nigeria: the way forward". Energy, Sustainability and Society. 2 (1): 15. Bibcode:2012ESusS...2...15O. doi:10.1186/2192-0567-2-15. ISSN 2192-0567. S2CID 40436190.
  297. ^ "Road Rubber". Sciencenetlinks.com Science Updates – Science NetLinks. Retrieved 11 January 2018.
  298. ^ Simeonova E (March 2018). "Congestion Pricing, Air Pollution and Children's Health". National Bureau of Environmental Research. Working Paper Series. doi:10.3386/w24410.
  299. ^ Academy S (16 April 2022). "Impact Of Air Pollution On The Environment". Samphina. Retrieved 18 June 2022.
  300. ^ "Subway air pollution damages passenger health". Chemistryworld.com. Retrieved 11 January 2018.
  301. ^ Singla S, Bansal D, Misra A, Raheja G (31 August 2018). "Towards an integrated framework for air quality monitoring and exposure estimation-a review". Environmental Monitoring and Assessment. 190 (9): 562. Bibcode:2018EMnAs.190..562S. doi:10.1007/s10661-018-6940-8. ISSN 1573-2959. PMID 30167891. S2CID 52135179.
  302. ^ Zarrar H, Dyo V (1 October 2023). "Drive-by Air Pollution Sensing Systems: Challenges and Future Directions". IEEE Sensors Journal. 23 (19): 23692–23703. Bibcode:2023ISenJ..2323692Z. doi:10.1109/JSEN.2023.3305779. hdl:10547/625961. S2CID 261152934.
  303. ^ Kaivonen S, Ngai EC (1 February 2020). "Real-time air pollution monitoring with sensors on city bus". Digital Communications and Networks. 6 (1): 23–30. doi:10.1016/j.dcan.2019.03.003. ISSN 2352-8648. S2CID 88485659.
  304. ^ Zhang R, Zhang Y, Lin H, Feng X, Fu TM, Wang Y (April 2020). "NOx Emission Reduction and Recovery during COVID-19 in East China". Atmosphere. 11 (4): 433. Bibcode:2020Atmos..11..433Z. doi:10.3390/atmos11040433. S2CID 219002558.
  305. ^ "Airborne Nitrogen Dioxide Plummets Over China". earthobservatory.nasa.gov. 28 February 2020. Archived from the original on 2 April 2020. Retrieved 6 April 2020.
  306. ^ "Analysis: Coronavirus temporarily reduced China's CO2 emissions by a quarter". Carbon Brief. 19 February 2020. Archived from the original on 4 March 2020. Retrieved 6 April 2020.
  307. ^ "New monitoring technologies can help cities combat air pollution". World Economic Forum. 15 April 2021. Retrieved 24 October 2021.
  308. ^ Yu T, Wang W, Ciren P, Sun R (18 October 2018). "An assessment of air-quality monitoring station locations based on satellite observations". International Journal of Remote Sensing. 39 (20): 6463–6478. Bibcode:2018IJRS...39.6463Y. doi:10.1080/01431161.2018.1460505. ISSN 0143-1161. S2CID 135457028.
  309. ^ "Pollution is Personal". The Atlantic. Retrieved 20 December 2021.
  310. ^ "World Air Map: Live air quality everywhere in the world". Plume Labs Air Report. Retrieved 20 December 2021.
  311. ^ "Live Animated Air Quality Map (AQI, PM2.5...) | AirVisual". IQAir. Retrieved 27 January 2022.
  312. ^ European Commission (11 May 2011). "European Commission - Environment - Air - Air quality". Archived from the original on 11 May 2011.
  313. ^ Canada Ea (10 September 2007). "About the Air Quality Health Index". Canada.ca. Retrieved 27 February 2022.
  314. ^ "Environment Canada – Air Quality". Ec.gc.ca. 10 September 2007. Retrieved 11 November 2011.
  315. ^ "Environment Canada – AQHI categories and explanations". Ec.gc.ca. 16 April 2008. Retrieved 11 November 2011.
  316. ^ "German TA-Luft is guaranteed by us". centrotherm clean solutions. Archived from the original on 29 June 2022. Retrieved 27 February 2022.
  317. ^ a b Europa (1996). "Summaries of EU legislation – Management and quality of ambient air". Retrieved 24 January 2015.
  318. ^ "PRESS RELEASE No 58/08 Judgment of the Court of Justice in Case C-237/07" (PDF). European Court of Justice. 2008. Retrieved 24 January 2015.
  319. ^ Overview of relevant case law and critical state of air pollution protection in the EU: Winfried Huck, Jennifer Maaß, Saparya Sood, Tahar Benmaghnia, Alexander Schulte, Sarah Heß and Marc-Anthony Walter, The Right to Breathe Clean Air and Access to Justice - Legal State of Play in International, European and National Law (2021) in 8(22) International Institutions: Transnational Networks eJournal, available at: http://dx.doi.org/10.2139/ssrn.3808572
  320. ^ European Commission. "Air quality: Commission sends final warning to UK over levels of fine particle pollution". Archived from the original on 11 May 2011. Retrieved 7 April 2011.
  321. ^ House of Commons Environmental Audit Committee (2010). "Environmental Audit Committee – Fifth Report Air Quality". Retrieved 24 January 2015.
  322. ^ a b Mulholland H (11 March 2011). "Britain fends off threat of £300m fine over London air pollution". The Guardian. Retrieved 24 January 2015.
  323. ^ "Every Breath You Take" (PDF). London Assembly Environment Committee. May 2009. Archived from the original (PDF) on 22 February 2015. Retrieved 22 February 2015.
  324. ^ BBC (6 December 2010). "Threat to sue over London congestion charge scrapping". BBC News. Retrieved 24 January 2015.
  325. ^ Risse-Kappen T (1995). Bringing transnational relations back in: non-state actors, domestic structures, and international institutions. Cambridge: Cambridge University Press. pp. 3–34.
  326. ^ a b Pattberg P, Stripple J (2008). "Beyond the public and private divide: remapping transnational climate governance in the 21st century". International Environmental Agreements: Politics, Law and Economics. 8 (4): 367–388. Bibcode:2008IEAPL...8..367P. doi:10.1007/s10784-008-9085-3. S2CID 62890754.
  327. ^ Roman M (2010). "Governing from the middle: the C40 Cities Leadership Group". Corporate Governance. 10 (1): 73–84. doi:10.1108/14720701011021120.
  328. ^ "Tribes do their part to keep air clean. Now, they want to make sure pollution from afar doesn't put that at risk". USA TODAY. Retrieved 16 April 2024.
  329. ^ "Air pollution hot spot". Retrieved 24 April 2014.
  330. ^ Pettit D (14 December 2014). "Global Toll of Air Pollution: Over 3 Million Deaths Each Year". Switchboard NRDC. Archived from the original on 8 May 2014.
  331. ^ "Watch air pollution flow across the planet in real time". Science Magazine News. 28 November 2016.
  332. ^ a b Drury R, Belliveau M, Kuhn JS, Shipra B (Spring 1999). "Pollution Trading and Environmental Justice: Los Angeles' Failed Experiment in Air Pollution Policy". Duke Environmental Law & Policy Forum. 9 (231).
  333. ^ a b Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD (2011). "Understanding the Cumulative Impacts of Inequalities in Environmental Health: Implications for Policy". Health Affairs. 30 (5): 879–87. doi:10.1377/hlthaff.2011.0153. PMID 21555471.
  334. ^ Mohai P, Lantz P, Morenoff J, House J, Mero R (2009). "Racial and Socioeocnomic Disparities in Residential Proximity". American Journal of Public Health. 99 (3): S649–56. doi:10.2105/ajph.2007.131383. PMC 2774179. PMID 19890171.
  335. ^ Lerner S (2010). "Sacrifice Zones: The Front Lines of Toxic Chemical Exposure in the United States". Port Arthur, Texas: Public Housing Residents Breathe Contaminated Air from Nearby Refineries and Chemical Plants. MIT Press.
  336. ^ Vohra K, Marais EA, Bloss WJ, Schwartz J, Mickley LJ, Van Damme M, et al. (8 April 2022). "Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018". Science Advances. 8 (14): eabm4435. Bibcode:2022SciA....8M4435V. doi:10.1126/sciadv.abm4435. ISSN 2375-2548. PMC 8993110. PMID 35394832.
  337. ^ Michelozzi P, Forastiere F, Fusco D, Perucci CA, Ostro B, Ancona C, et al. (1998). "Air Pollution and Daily Mortality in Rome, Italy". Occupational and Environmental Medicine. 55 (9): 605–10. doi:10.1136/oem.55.9.605. JSTOR 27730990. PMC 1757645. PMID 9861182.
  338. ^ The Daily Telegraph 8 January 2014 'Air pollution killing up to 500,000 Chinese each year, admits former health minister'.
  339. ^ "World's Most Polluted Cities in 2020 - PM2.5 Ranking | AirVisual". www.iqair.com. Retrieved 1 February 2022.
  340. ^ "World Air Quality Index (AQI) Ranking | IQAir". www.iqair.com. Retrieved 24 May 2022.
  341. ^ Darame M (29 November 2019). "En Afrique de l'Ouest, une pollution mortelle mais d'ampleur inconnue" [In West Africa, deadly pollution but of unknown magnitude]. Le Monde (in French).
  342. ^ Organisation for Economic Co-operation and Development (1 March 2012). "Environmental Outlook to 2050 - OECD" (PDF). OECD.

Further reading

[edit]
  • Brimblecombe P (1987). The Big Smoke: A History of Air Pollution in London Since Medieval Times. Routledge. ISBN 978-1-136-70329-4.
  • Brimblecombe P (1995). "1: History of air pollution". In Singh H (ed.). Composition, chemistry, and climate of the atmosphere. New York: John Wiley & Sons. pp. 1–18. ISBN 978-0-471-28514-4. OCLC 43084000.
  • Brimblecombe P, Makra L (2005). "Selections from the history of environmental pollution, with special attention to air pollution. Part 2*: From medieval times to the 19th century". International Journal of Environment and Pollution. 23 (4): 351–67. doi:10.1504/ijep.2005.007599.
  • Cherni, Judith A. Economic Growth versus the Environment: The Politics of Wealth, Health and Air Pollution (2002) online
  • Corton, Christine L. London Fog: The Biography (2015)
  • Currie, Donya. "WHO: Air Pollution a Continuing Health Threat in World's Cities", The Nation's Health (February 2012) 42#1 online
  • Dewey, Scott Hamilton. Don't Breathe the Air: Air Pollution and US Environmental Politics, 1945–1970 (Texas A & M University Press, 2000)
  • Gonzalez, George A. The politics of air pollution: Urban growth, ecological modernization, and symbolic inclusion (SUNY Press, 2012)
  • Grinder RD (1978). "From Insurgency to Efficiency: The Smoke Abatement Campaign in Pittsburgh before World War I.". Western Pennsylvania Historical Magazine. 61 (3): 187–202.
  • Grinder, Robert Dale. "The Battle for Clean Air: The Smoke Problem in Post-Civil War America" in Martin V. Melosi, ed., Pollution & Reform in American Cities, 1870–1930 (1980), pp. 83–103.
  • Kumar P, Pirjola L, Ketzel M, Harrison RM (2013). "Nanoparticle emissions from 11 non-vehicle exhaust sources – A review". Atmospheric Environment. 67. Elsevier BV: 252–277. Bibcode:2013AtmEn..67..252K. doi:10.1016/j.atmosenv.2012.11.011. ISSN 1352-2310.
  • Lundqvist LJ (1980). The Hare and the Tortoise: Clean Air Policy in the US and Sweden. Ann Arbor, MI: University of Michigan Press. ISBN 978-0-472-09310-6.
  • Mingle, Jonathan, "Our Lethal Air" [review of Gary Fuller, The Invisible Killer...; Beth Gardiner, Choked...; Tim Smedley, Clearing the Air...; U.S. Environmental Protection Agency, Integrated Science Assessment for Particulate Matter (External Review Draft, 2018); and Chartered Clean Air Scientific Advisory Committee, Letter to EPA Administrator on the EPA's Integrated Science Assessment for Particulate Matter, 11 April 2019], The New York Review of Books, vol. LXVI, no. 14 (26 September 2019), pp. 64–66, 68. "Today, 91 percent of people worldwide live in areas where air pollution levels exceed the World Health Organization's recommended limits. ... [T]here is no safe level of exposure to fine particulate matter. ... Most of these fine particles are a by-product of ... burning ... coal, gasoline, diesel, wood, trash ... These particles can get past the defenses of our upper airways to penetrate deep into our lungs and reach the alveoli ... From there, they cross into the bloodstream and spread throughout the body. They can travel through the nose, up the olfactory nerve, and lodge ... in the brain. They can form deposits on the lining of arteries, constricting blood vessels and raising the likelihood of ... strokes and heart attacks. [T]hey exacerbate respiratory illnesses like asthma and chronic obstructive pulmonary disease ... There's ... evidence linking air pollution exposure to an increased risk of Alzheimer's and other forms of dementia." (p. 64.)
  • Mosley, Stephen. The chimney of the world: a history of smoke pollution in Victorian and Edwardian Manchester. Routledge, 2013.
  • Schreurs, Miranda A. Environmental Politics in Japan, Germany, and the United States (Cambridge University Press, 2002) online
  • Thorsheim, Peter. Inventing Pollution: Coal, Smoke, and Culture in Britain since 1800 (2009)
[edit]
  • WHO fact sheet on outdoor air pollution
  • Air Pollution: Everything You Need to Know Guide by the Natural Resources Defense Council (NRDC)
  • Global real-time air quality index map
  • Air Quality Index (AQI) Basics
  • AQI Calculator AQI to Concentration and Concentration to AQI for five pollutants
  • UNEP Urban environmental planning
  • European Commission > Environment > Air > Air Quality
  • Database: outdoor air pollution in cities from the World Health Organization
  • The Mortality Effects of Long-Term Exposure to Particulate Air Pollution in the United Kingdom, UK Committee on the Medical Effects of Air Pollution, 2010.
  • Hazardous air pollutants | What are hazardous pollutants at EPA.gov

 

Photo
Photo
Photo

Driving Directions in Tulsa County


Driving Directions From East Central High School to Durham Supply Inc
Driving Directions From Tulsa VA Behavioral Medicine Clinic to Durham Supply Inc
Driving Directions From Nights Stay Hotel to Durham Supply Inc
Driving Directions From Church on the Move Tulsa to Durham Supply Inc
Driving Directions From Tuff Shed Tulsa to Durham Supply Inc
Driving Directions From Reception Jehovah's Witnesses to Durham Supply Inc
Driving Directions From Bob Dylan Center to Durham Supply Inc
Driving Directions From Woodward Park and Gardens to Durham Supply Inc
Driving Directions From Golden Driller Statue to Durham Supply Inc
Driving Directions From Bob Dylan Center to Durham Supply Inc
Driving Directions From Streetwalker Tours to Durham Supply Inc
Driving Directions From Oxley Nature Center to Durham Supply Inc

Reviews for Durham Supply Inc


Durham Supply Inc

Ethel Schiller

(5)

This place is really neat, if they don't have it they can order it from another of their stores and have it there overnight in most cases. Even hard to find items for a trailer! I definitely recommend this place to everyone! O and the prices is awesome too!

Durham Supply Inc

B Mann

(5)

I was in need of some items for a double wide that I am remodeling and this place is the only place in town that had what I needed ( I didn't even try the other rude place )while I was there I learned the other place that was in Tulsa that also sold mobile home supplies went out of business (no wonder the last time I was in there they were VERY RUDE and high priced) I like the way Dunham does business they answered all my questions and got me the supplies I needed, very friendly, I will be back to purchase the rest of my items when the time comes.

Durham Supply Inc

Dennis Champion

(5)

Durham supply and Royal supply seems to find the most helpful and friendly people to work in their stores, we are based out of Kansas City out here for a few remodels and these guys treated us like we've gone there for years.

Durham Supply Inc

Ty Spears

(5)

Bought a door/storm door combo. Turns out it was the wrong size. They swapped it out, quick and easy no problems. Very helpful in explaining the size differences from standard door sizes.

Durham Supply Inc

Gerald Clifford Brewster

(5)

We will see, the storm door I bought says on the tag it's 36x80, but it's 34x80. If they return it.......they had no problems returning it. And it was no fault of there's, you measure a mobile home door different than a standard door!

View GBP

Frequently Asked Questions

To prevent moisture buildup, ensure your HVAC system includes a dehumidifier to control humidity levels. Regularly check and clean air vents to maintain airflow, and use exhaust fans in kitchens and bathrooms to expel moist air. Additionally, consider using moisture absorbers or desiccants in enclosed areas.
Improve HVAC efficiency by sealing any leaks around windows, doors, and ductwork to prevent humid air from entering. Replace or clean air filters regularly to ensure optimal airflow. Use programmable thermostats to maintain consistent temperatures and reduce strain on the system during fluctuating weather conditions.
Look for an HVAC system with a built-in dehumidification feature that efficiently manages humidity levels. Systems with variable-speed technology offer better control over temperature and humidity fluctuations. Additionally, choose systems with high SEER (Seasonal Energy Efficiency Ratio) ratings for greater energy efficiency during diverse weather conditions.